/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori; /** * <p> * @author Written by Alvaro Lopez * @version 1.0 * @since JDK1.6 * </p> */ import java.util.*; import org.core.Randomize; public class GeneticFuzzyAprioriProcess { /** * <p> * It provides the implementation of the algorithm to be run in a process * </p> */ private int nEvaluations; private int popSize; private double pm; private double pc; private double d; private int nFuzzyRegionsForNumericAttributes; private boolean useMaxForOneFrequentItemsets; private double minSupport; private double minConfidence; private myDataset dataset; private int nEval; private int nGenerations; private int evaluationStep; private String geneticLearningLog; private ArrayList<Integer> idOfAttributes; private ArrayList<FuzzyAttribute> fuzzyAttributes; private int countOneFrequentItemsets; private int countFrequentItemsets; private ArrayList<AssociationRule> associationRulesSet; private boolean[] coveredRecords; /** * <p> * It creates a new process for the algorithm by setting up its parameters * </p> * @param dataset The instance of the dataset for dealing with its records * @param nEvaluations The maximum number of evaluations to accomplish before terminating the genetic learning * @param popSize The maximum size of population to handle after each generation * @param pm The probability of the mutation operator * @param pc The probability of the crossover operator * @param d The parameter which is used while executing the crossover operator * @param nFuzzyRegionsForNumericAttributes The number of fuzzy regions with which numeric attributes are evaluated * @param useMaxForOneFrequentItemsets It indicates whether the max operator must be used while discovering 1-Frequent Itemsets * @param minSupport The user-specified minimum support for the mined association rules * @param minConfidence The user-specified minimum confidence for the mined association rules */ public GeneticFuzzyAprioriProcess(myDataset dataset, int nEvaluations, int popSize, double pm, double pc, double d, int nFuzzyRegionsForNumericAttributes, boolean useMaxForOneFrequentItemsets, double minSupport, double minConfidence) { this.nEvaluations = nEvaluations; this.popSize = popSize; this.pm = pm; this.pc = pc; this.d = d; this.nFuzzyRegionsForNumericAttributes = nFuzzyRegionsForNumericAttributes; this.useMaxForOneFrequentItemsets = useMaxForOneFrequentItemsets; this.minSupport = minSupport; this.minConfidence = minConfidence; this.dataset = dataset; this.nEval = 0; this.nGenerations = 0; this.evaluationStep = (int) Math.ceil(nEvaluations * 0.05); this.idOfAttributes = dataset.getIDsOfNumericAttributes(); this.countOneFrequentItemsets = 0; this.countFrequentItemsets = 0; this.associationRulesSet = new ArrayList<AssociationRule>(); this.coveredRecords = new boolean[ dataset.getnTrans() ]; for (int i=0; i < this.coveredRecords.length; i++) this.coveredRecords[i] = false; } /** * <p> * It runs the algorithm for mining association rules * </p> */ public void run() { this.fuzzyAttributes = this.runGeneticAlgorithm(); if (this.fuzzyAttributes == null) this.fuzzyAttributes = new ArrayList<FuzzyAttribute>(); this.addNominalFuzzyAttributes(this.fuzzyAttributes); /*for (int i=0; i < fuzzyAttributes.size(); i++) System.out.println("ID Fuzzy Attribute #" + this.fuzzyAttributes.get(i).getIdAttr() + ":\n" + this.fuzzyAttributes.get(i) + "\n");*/ this.runFuzzyApriori( new FuzzyDataset(this.dataset, this.fuzzyAttributes) ); } /** * <p> * It returns a rules set once the algorithm has been carried out * </p> * @return An array of association rules having both minimum confidence and support */ public ArrayList<AssociationRule> getRulesSet() { return this.associationRulesSet; } /** * <p> * It prints out on screen relevant information regarding the mined association rules * </p> * @param rules The array of association rules from which gathering relevant information */ public void printReport(ArrayList<AssociationRule> rules) { int r; double avg_sup = 0.0, avg_conf = 0.0, avg_ant_length = 0.0, avg_interest = 0.0; AssociationRule ar; for (r=0; r < rules.size(); r++) { ar = rules.get(r); avg_sup += ar.getRuleSupport(); avg_conf += ar.getConfidence(); avg_ant_length += ar.getAntecedent().size(); avg_interest += ar.getInterestingness(); } System.out.println("\nNumber of Frequent Itemsets found: " + this.countFrequentItemsets); System.out.println("Number of Association Rules generated: " + rules.size()); if (! rules.isEmpty()) { System.out.println("Average Support: " + ( avg_sup / rules.size() )); System.out.println("Average Confidence: " + ( avg_conf / rules.size() )); System.out.println("Average Antecedents Length: " + ( avg_ant_length / rules.size() )); System.out.println("Number of Covered Records (%): " + ( (100.0 * this.countCoveredRecords()) / this.dataset.getnTrans())); System.out.println("Average Interestingness: " + ( avg_interest / rules.size() )); } } /** * <p> * It returns the number of 1-Frequent Itemsets * </p> * @return A value representing the number of 1-Frequent Itemsets */ public int getNumberOfOneFrequentItemsets() { return this.countOneFrequentItemsets; } /** * <p> * It returns the XML string representing the genetic learning log * </p> * @return A string containing the genetic learning text */ public String getGeneticLearningLog() { return this.geneticLearningLog; } /** * <p> * It returns the mined fuzzy attributes once the genetic learning has been accomplished * </p> * @return An array representing the mined fuzzy attributes */ public ArrayList<FuzzyAttribute> getFuzzyAttributes() { return this.fuzzyAttributes; } private void addNominalFuzzyAttributes(ArrayList<FuzzyAttribute> fuzzy_attributes) { int attr, id_attr, id_region; FuzzyRegion[] fuzzy_regions; ArrayList<Integer> id_of_nominal_attributes; id_of_nominal_attributes = this.dataset.getIDsOfNominalAttributes(); for (attr=0; attr < id_of_nominal_attributes.size(); attr++) { id_attr = id_of_nominal_attributes.get(attr); fuzzy_regions = new FuzzyRegion[((int) this.dataset.getMax(id_attr)) + 1]; for (id_region=0; id_region < fuzzy_regions.length; id_region++) { fuzzy_regions[id_region] = new FuzzyRegion(); fuzzy_regions[id_region].setX0(this.dataset.getMin(id_attr) + id_region - 1); fuzzy_regions[id_region].setX1(this.dataset.getMin(id_attr) + id_region); fuzzy_regions[id_region].setX3(this.dataset.getMin(id_attr) + id_region + 1); fuzzy_regions[id_region].setY(1.0); fuzzy_regions[id_region].setLabel(this.dataset.getNominalValue(id_attr, id_region)); } fuzzy_attributes.add( new FuzzyAttribute(id_attr, fuzzy_regions) ); } } private ArrayList<FuzzyAttribute> runGeneticAlgorithm() { ArrayList<FuzzyAttribute> best_fuzzy_attrs = null; ArrayList<Chromosome> pop; this.geneticLearningLog = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"; this.geneticLearningLog += "<genetic_learning>\n"; if (! this.idOfAttributes.isEmpty()) { System.out.print("Initialing population... "); pop = this.initializePopulation(); System.out.println("done [Evaluations: " + this.nEval + "]."); while (this.nEval < this.nEvaluations) { this.nGenerations++; System.out.print("Computing Generation #" + this.nGenerations + "... "); this.crossover(pop); this.mutate(pop); best_fuzzy_attrs = this.select(pop); System.out.println("done [Evaluations: " + this.nEval + "]."); } /*for (int i=0; i < pop.size(); i++) System.out.println("Chromosome #" + (i+1) + ":\n" + pop.get(i) + "\n");*/ } this.geneticLearningLog += "</genetic_learning>"; return best_fuzzy_attrs; } private ArrayList<Chromosome> initializePopulation() { int p, g, m, id_attr; MembershipFunction[] membership_functions; Gene[] genes; Chromosome chr; ArrayList<Chromosome> popInit; popInit = new ArrayList<Chromosome>(); membership_functions = new MembershipFunction[ this.nFuzzyRegionsForNumericAttributes ]; genes = new Gene[ this.idOfAttributes.size() ]; for (p=0; p < this.popSize; p++) { for (g=0; g < genes.length; g++) { id_attr = this.idOfAttributes.get(g); for (m=0; m < membership_functions.length; m++) { membership_functions[m] = new MembershipFunction(); membership_functions[m].setC( Randomize.RanddoubleClosed(this.dataset.getMin(id_attr), this.dataset.getMax(id_attr)) ); membership_functions[m].setW( Randomize.RanddoubleClosed(0.0, (this.dataset.getMax(id_attr) - this.dataset.getMin(id_attr)) / 2.0) ); } genes[g] = new Gene(membership_functions); genes[g].sortMembershipFunctions(); } chr = new Chromosome(genes); this.evaluateFitness(chr); popInit.add(chr); } return popInit; } private ArrayList<FuzzyAttribute> select(ArrayList<Chromosome> pop) { Collections.sort(pop); while (pop.size() > this.popSize) pop.remove(this.popSize); return ( this.transformIntoFuzzyAttributes( pop.get(0) ) ); } private void crossover(ArrayList<Chromosome> pop) { int i, j, index_best_chr, aux; double best_fitness, sum_expected_values, rank_min, rank_max, factor, sum, rnd; double[] expected_values; int[] index_mating_pool; Chromosome mom, dad; Chromosome[] offsprings; rank_min = 0.75; rank_max = 2.0 - rank_min; factor = (rank_max - rank_min) / (double)(pop.size() - 1); expected_values = new double[ pop.size() ]; for (i=0; i < expected_values.length; i++) expected_values[i] = 0.0; sum_expected_values = 0.0; for (i=0; i < pop.size(); i++) { index_best_chr = -1; best_fitness = 0.0; for (j=0; j < pop.size(); j++) { if ( (expected_values[j] == 0.0) && ( (index_best_chr == -1) || (pop.get(j).getFitness() > best_fitness) ) ) { best_fitness = pop.get(j).getFitness(); index_best_chr = j; } } expected_values[index_best_chr] = rank_min + (pop.size() - 1 - i) * factor; sum_expected_values += expected_values[index_best_chr]; } index_mating_pool = new int[ expected_values.length ]; for (i=0; i < index_mating_pool.length; i++) { sum = 0.0; rnd = Randomize.RanddoubleClosed(0.0, sum_expected_values); for (j=0; j < expected_values.length; j++) { sum += expected_values[j]; if (sum > rnd) break; } index_mating_pool[i] = j; } for (i=0; i < index_mating_pool.length; i++) { j = Randomize.Randint(i, index_mating_pool.length); aux = index_mating_pool[j]; index_mating_pool[j] = index_mating_pool[i]; index_mating_pool[i] = aux; } offsprings = new Chromosome[4]; for (i=0; i < (index_mating_pool.length / 2); i++) { mom = pop.get( index_mating_pool[2 * i] ); dad = pop.get( index_mating_pool[2 * i + 1] ); if (Randomize.Rand() < this.pc) { for (j=0; j < offsprings.length; j++) { offsprings[j] = this.mma(j, mom.getGenes(), dad.getGenes()); this.evaluateFitness(offsprings[j]); } Arrays.sort(offsprings); pop.add(offsprings[0]); pop.add(offsprings[1]); } } } /** * It implements the max-min-arithmetical crossover operator */ private Chromosome mma(int index, Gene[] mom_genes, Gene[] dad_genes) { int g, m; Gene[] offspring_genes; MembershipFunction[] offspring_mfs, mom_mfs, dad_mfs; offspring_mfs = new MembershipFunction[ this.nFuzzyRegionsForNumericAttributes ]; offspring_genes = new Gene[ this.idOfAttributes.size() ]; switch(index) { case 0: for (g=0; g < offspring_genes.length; g++) { mom_mfs = mom_genes[g].getMembershipFunctions(); dad_mfs = dad_genes[g].getMembershipFunctions(); for (m=0; m < offspring_mfs.length; m++) { offspring_mfs[m] = new MembershipFunction(); offspring_mfs[m].setC(this.d * mom_mfs[m].getC() + (1 - this.d) * dad_mfs[m].getC()); offspring_mfs[m].setW(this.d * mom_mfs[m].getW() + (1 - this.d) * dad_mfs[m].getW()); } offspring_genes[g] = new Gene(offspring_mfs); offspring_genes[g].sortMembershipFunctions(); } break; case 1: for (g=0; g < offspring_genes.length; g++) { mom_mfs = mom_genes[g].getMembershipFunctions(); dad_mfs = dad_genes[g].getMembershipFunctions(); for (m=0; m < offspring_mfs.length; m++) { offspring_mfs[m] = new MembershipFunction(); offspring_mfs[m].setC((1 - this.d) * mom_mfs[m].getC() + this.d * dad_mfs[m].getC()); offspring_mfs[m].setW((1 - this.d) * mom_mfs[m].getW() + this.d * dad_mfs[m].getW()); } offspring_genes[g] = new Gene(offspring_mfs); offspring_genes[g].sortMembershipFunctions(); } break; case 2: for (g=0; g < offspring_genes.length; g++) { mom_mfs = mom_genes[g].getMembershipFunctions(); dad_mfs = dad_genes[g].getMembershipFunctions(); for (m=0; m < offspring_mfs.length; m++) { offspring_mfs[m] = new MembershipFunction(); offspring_mfs[m].setC( Math.min(mom_mfs[m].getC(), dad_mfs[m].getC()) ); offspring_mfs[m].setW( Math.min(mom_mfs[m].getW(), dad_mfs[m].getW()) ); } offspring_genes[g] = new Gene(offspring_mfs); offspring_genes[g].sortMembershipFunctions(); } break; case 3: for (g=0; g < offspring_genes.length; g++) { mom_mfs = mom_genes[g].getMembershipFunctions(); dad_mfs = dad_genes[g].getMembershipFunctions(); for (m=0; m < offspring_mfs.length; m++) { offspring_mfs[m] = new MembershipFunction(); offspring_mfs[m].setC( Math.max(mom_mfs[m].getC(), dad_mfs[m].getC()) ); offspring_mfs[m].setW( Math.max(mom_mfs[m].getW(), dad_mfs[m].getW()) ); } offspring_genes[g] = new Gene(offspring_mfs); offspring_genes[g].sortMembershipFunctions(); } } return ( new Chromosome(offspring_genes) ); } /** * It implements the one-point mutation operator */ private void mutate(ArrayList<Chromosome> pop) { int p, id_attr, id_region; double w, eps; Chromosome chr; Gene[] genes; MembershipFunction[] membership_functions; for (p=0; p < pop.size(); p++) { if (Randomize.Rand() < this.pm) { chr = new Chromosome( pop.get(p).getGenes() ); genes = chr.getGenes(); id_attr = Randomize.Randint(0, genes.length); membership_functions = genes[id_attr].getMembershipFunctions(); id_region = Randomize.Randint(0, membership_functions.length); w = membership_functions[id_region].getW(); eps = Randomize.RanddoubleClosed(-w, w); if (Randomize.Rand() < 0.5) { membership_functions[id_region].setC(membership_functions[id_region].getC() + eps); genes[id_attr].sortMembershipFunctions(); } else membership_functions[id_region].setW(w + eps); this.evaluateFitness(chr); pop.add(chr); } } } private void evaluateFitness(Chromosome c) { int g, id_attr, num_one_frequent_itemsets; double suitability, fitness; Gene[] genes; genes = c.getGenes(); suitability = 0.0; for (g=0; g < genes.length; g++) { id_attr = this.idOfAttributes.get(g); suitability += ( genes[g].calculateOverlapFactor() + genes[g].calculateCoverageFactor(this.dataset.getMin(id_attr), this.dataset.getMax(id_attr)) ); } num_one_frequent_itemsets = ( this.generateOneFrequentItemsets( new FuzzyDataset(this.dataset, this.transformIntoFuzzyAttributes(c) ), false) ).size(); fitness = num_one_frequent_itemsets / suitability; c.setNumOneFrequentItemsets(num_one_frequent_itemsets); c.setSuitability(suitability); c.setFitness(fitness); this.nEval++; if ((this.nEval % this.evaluationStep) == 0) this.buildXMLRecord(fitness, num_one_frequent_itemsets, suitability); } private void buildXMLRecord(double fitness, int num_one_frequent_itemsets, double suitability) { this.geneticLearningLog += "<log n_evaluations=\"" + this.nEval + "\" "; this.geneticLearningLog += "n_generation=\"" + this.nGenerations + "\" "; this.geneticLearningLog += "fitness=\"" + fitness + "\" "; this.geneticLearningLog += "n_one_frequent_itemsets=\"" + num_one_frequent_itemsets + "\" "; this.geneticLearningLog += "suitability=\"" + suitability + "\"/>\n"; } private ArrayList<FuzzyAttribute> transformIntoFuzzyAttributes(Chromosome c) { int g, m; Gene[] genes; MembershipFunction[] membership_functions; FuzzyRegion[] fuzzy_regions; ArrayList<FuzzyAttribute> fuzzy_attributes; fuzzy_attributes = new ArrayList<FuzzyAttribute>(); genes = c.getGenes(); for (g=0; g < genes.length; g++) { membership_functions = genes[g].getMembershipFunctions(); fuzzy_regions = new FuzzyRegion[ membership_functions.length ]; for (m=0; m < membership_functions.length; m++) { fuzzy_regions[m] = new FuzzyRegion(); fuzzy_regions[m].setX0( membership_functions[m].getC() - membership_functions[m].getW() ); fuzzy_regions[m].setX1( membership_functions[m].getC() ); fuzzy_regions[m].setX3( membership_functions[m].getC() + membership_functions[m].getW() ); fuzzy_regions[m].setY(1.0); fuzzy_regions[m].setLabel("LABEL_" + m); } fuzzy_attributes.add( new FuzzyAttribute(this.idOfAttributes.get(g), fuzzy_regions) ); } return fuzzy_attributes; } private void runFuzzyApriori(FuzzyDataset fuzzyDataset) { int pass = 0; ArrayList<Itemset> current_frequent_itemsets; current_frequent_itemsets = this.generateOneFrequentItemsets(fuzzyDataset, this.useMaxForOneFrequentItemsets); this.countOneFrequentItemsets = current_frequent_itemsets.size(); this.countFrequentItemsets = this.countOneFrequentItemsets; System.out.println("\nPass: " + (pass + 1) + "; Total Frequent Itemsets: " + this.countFrequentItemsets); for (pass=1; (pass < this.dataset.getnVars()) && (current_frequent_itemsets.size() > 1); pass++) { current_frequent_itemsets = this.generateCandidateItemsetsAndRules(fuzzyDataset, current_frequent_itemsets); this.countFrequentItemsets += current_frequent_itemsets.size(); System.out.println("Pass: " + (pass + 1) + "; Total Frequent Itemsets: " + this.countFrequentItemsets + "; Total Association Rules: " + this.associationRulesSet.size()); } } private ArrayList<Itemset> generateOneFrequentItemsets(FuzzyDataset fuzzyDataset, boolean use_max_for_one_frequent_itemsets) { int id_attr, id_region; double max_support; int[] num_fuzzy_regions; Itemset itemset, best_itemset; ArrayList<Itemset> one_frequent_itemsets; num_fuzzy_regions = fuzzyDataset.getNumberOfFuzzyRegions(); one_frequent_itemsets = new ArrayList<Itemset>(); if (use_max_for_one_frequent_itemsets) { for (id_attr=0; id_attr < fuzzyDataset.getNumberOfFuzzyAttributes(); id_attr++) { best_itemset = new Itemset(); best_itemset.add( new Item(id_attr, 0) ); best_itemset.calculateSupport(fuzzyDataset); max_support = best_itemset.getSupport(); for (id_region=1; id_region < num_fuzzy_regions[id_attr]; id_region++) { itemset = new Itemset(); itemset.add( new Item(id_attr, id_region) ); itemset.calculateSupport(fuzzyDataset); if (itemset.getSupport() > max_support) { max_support = itemset.getSupport(); best_itemset = itemset; } } if (max_support >= this.minSupport) one_frequent_itemsets.add(best_itemset); } } else { for (id_attr=0; id_attr < fuzzyDataset.getNumberOfFuzzyAttributes(); id_attr++) { for (id_region=0; id_region < num_fuzzy_regions[id_attr]; id_region++) { itemset = new Itemset(); itemset.add( new Item(id_attr, id_region) ); itemset.calculateSupport(fuzzyDataset); if (itemset.getSupport() >= this.minSupport) one_frequent_itemsets.add(itemset); } } } return one_frequent_itemsets; } private ArrayList<Itemset> generateCandidateItemsetsAndRules(FuzzyDataset fuzzyDataset, ArrayList<Itemset> curr_freq_itemsets) { int i, j, size; boolean generated_rules; Itemset i_itemset, j_itemset, new_itemset; ArrayList<Integer> covered_tids; ArrayList<Itemset> next_freq_itemsets; size = curr_freq_itemsets.size(); next_freq_itemsets = new ArrayList<Itemset>(); for (i=0; i < size-1; i++) { i_itemset = curr_freq_itemsets.get(i); for (j=i+1; j < size; j++) { j_itemset = curr_freq_itemsets.get(j); if ( this.isCombinable(i_itemset, j_itemset, curr_freq_itemsets) ) { new_itemset = i_itemset.clone(); new_itemset.add( ( j_itemset.get(j_itemset.size() - 1) ).clone() ); covered_tids = new_itemset.calculateSupport(fuzzyDataset); if (new_itemset.getSupport() >= this.minSupport) { generated_rules = this.generateRulesFromItemset(fuzzyDataset, new_itemset); if (generated_rules) this.markCoveredRecords(covered_tids); next_freq_itemsets.add(new_itemset); } } } } return next_freq_itemsets; } private boolean generateRulesFromItemset(FuzzyDataset fuzzyDataset, Itemset curr_itemset) { int i; double rule_sup, ant_sup, rule_conf,cons_sup,interest; boolean generated_rules = false; Item i_item; Itemset antecedent, consequent; for (i=0; i < curr_itemset.size(); i++) { antecedent = curr_itemset.clone(); i_item = antecedent.remove(i); antecedent.calculateSupport(fuzzyDataset); rule_sup = curr_itemset.getSupport(); ant_sup = antecedent.getSupport(); rule_conf = rule_sup / ant_sup; if (rule_conf >= this.minConfidence) { consequent = new Itemset(); consequent.add(i_item); consequent.calculateSupport(fuzzyDataset); cons_sup = consequent.getSupport(); interest = rule_conf * (rule_sup/cons_sup) * (1 - (rule_sup/this.dataset.getnTrans())); this.associationRulesSet.add( new AssociationRule(antecedent, consequent, rule_sup, ant_sup, rule_conf,cons_sup,interest) ); if (! generated_rules) generated_rules = true; } } return generated_rules; } private boolean isCombinable(Itemset i_itemset, Itemset j_itemset, ArrayList<Itemset> curr_freq_itemsets) { int i; Item i_item, j_item; Itemset itemset; if (i_itemset.size() != j_itemset.size()) return false; i_item = i_itemset.get(i_itemset.size() - 1); j_item = j_itemset.get(i_itemset.size() - 1); if (i_item.getIDAttribute() >= j_item.getIDAttribute()) return false; for (i=0; i < (i_itemset.size() - 1); i++) { i_item = i_itemset.get(i); j_item = j_itemset.get(i); if (! i_item.equals(j_item)) return false; } itemset = i_itemset.clone(); itemset.add( ( j_itemset.get(i_itemset.size() - 1) ).clone() ); if ( this.pruning(itemset, curr_freq_itemsets) ) return false; return true; } private boolean pruning(Itemset itemset, ArrayList<Itemset> curr_freq_itemsets) { int i; Itemset sub; for (i=0; i < itemset.size() - 2; i++) { sub = itemset.clone(); sub.remove(i); if (! this.existingIntoFrequentItemsets(sub, curr_freq_itemsets)) return true; } return false; } private boolean existingIntoFrequentItemsets(Itemset itemset, ArrayList<Itemset> curr_freq_itemsets) { int i; Itemset its; for (i=0; i < curr_freq_itemsets.size(); i++) { its = curr_freq_itemsets.get(i); if ( its.equals(itemset) ) return true; } return false; } private void markCoveredRecords(ArrayList<Integer> covered_tids) { int i, t; for (i=0; i < covered_tids.size(); i++) { t = covered_tids.get(i); if (! this.coveredRecords[t]) this.coveredRecords[t] = true; } } private int countCoveredRecords() { int i, cnt_covered_records = 0; for (i=0; i < this.coveredRecords.length; i++) { if (this.coveredRecords[i]) cnt_covered_records++; } return cnt_covered_records; } }