/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.GeneticFuzzyApriori;
/**
* <p>
* @author Written by Alvaro Lopez
* @version 1.0
* @since JDK1.6
* </p>
*/
import java.util.*;
import org.core.Randomize;
public class GeneticFuzzyAprioriProcess {
/**
* <p>
* It provides the implementation of the algorithm to be run in a process
* </p>
*/
private int nEvaluations;
private int popSize;
private double pm;
private double pc;
private double d;
private int nFuzzyRegionsForNumericAttributes;
private boolean useMaxForOneFrequentItemsets;
private double minSupport;
private double minConfidence;
private myDataset dataset;
private int nEval;
private int nGenerations;
private int evaluationStep;
private String geneticLearningLog;
private ArrayList<Integer> idOfAttributes;
private ArrayList<FuzzyAttribute> fuzzyAttributes;
private int countOneFrequentItemsets;
private int countFrequentItemsets;
private ArrayList<AssociationRule> associationRulesSet;
private boolean[] coveredRecords;
/**
* <p>
* It creates a new process for the algorithm by setting up its parameters
* </p>
* @param dataset The instance of the dataset for dealing with its records
* @param nEvaluations The maximum number of evaluations to accomplish before terminating the genetic learning
* @param popSize The maximum size of population to handle after each generation
* @param pm The probability of the mutation operator
* @param pc The probability of the crossover operator
* @param d The parameter which is used while executing the crossover operator
* @param nFuzzyRegionsForNumericAttributes The number of fuzzy regions with which numeric attributes are evaluated
* @param useMaxForOneFrequentItemsets It indicates whether the max operator must be used while discovering 1-Frequent Itemsets
* @param minSupport The user-specified minimum support for the mined association rules
* @param minConfidence The user-specified minimum confidence for the mined association rules
*/
public GeneticFuzzyAprioriProcess(myDataset dataset, int nEvaluations, int popSize, double pm, double pc, double d, int nFuzzyRegionsForNumericAttributes, boolean useMaxForOneFrequentItemsets, double minSupport, double minConfidence) {
this.nEvaluations = nEvaluations;
this.popSize = popSize;
this.pm = pm;
this.pc = pc;
this.d = d;
this.nFuzzyRegionsForNumericAttributes = nFuzzyRegionsForNumericAttributes;
this.useMaxForOneFrequentItemsets = useMaxForOneFrequentItemsets;
this.minSupport = minSupport;
this.minConfidence = minConfidence;
this.dataset = dataset;
this.nEval = 0;
this.nGenerations = 0;
this.evaluationStep = (int) Math.ceil(nEvaluations * 0.05);
this.idOfAttributes = dataset.getIDsOfNumericAttributes();
this.countOneFrequentItemsets = 0;
this.countFrequentItemsets = 0;
this.associationRulesSet = new ArrayList<AssociationRule>();
this.coveredRecords = new boolean[ dataset.getnTrans() ];
for (int i=0; i < this.coveredRecords.length; i++)
this.coveredRecords[i] = false;
}
/**
* <p>
* It runs the algorithm for mining association rules
* </p>
*/
public void run() {
this.fuzzyAttributes = this.runGeneticAlgorithm();
if (this.fuzzyAttributes == null) this.fuzzyAttributes = new ArrayList<FuzzyAttribute>();
this.addNominalFuzzyAttributes(this.fuzzyAttributes);
/*for (int i=0; i < fuzzyAttributes.size(); i++)
System.out.println("ID Fuzzy Attribute #" + this.fuzzyAttributes.get(i).getIdAttr() + ":\n" + this.fuzzyAttributes.get(i) + "\n");*/
this.runFuzzyApriori( new FuzzyDataset(this.dataset, this.fuzzyAttributes) );
}
/**
* <p>
* It returns a rules set once the algorithm has been carried out
* </p>
* @return An array of association rules having both minimum confidence and support
*/
public ArrayList<AssociationRule> getRulesSet() {
return this.associationRulesSet;
}
/**
* <p>
* It prints out on screen relevant information regarding the mined association rules
* </p>
* @param rules The array of association rules from which gathering relevant information
*/
public void printReport(ArrayList<AssociationRule> rules) {
int r;
double avg_sup = 0.0, avg_conf = 0.0, avg_ant_length = 0.0, avg_interest = 0.0;
AssociationRule ar;
for (r=0; r < rules.size(); r++) {
ar = rules.get(r);
avg_sup += ar.getRuleSupport();
avg_conf += ar.getConfidence();
avg_ant_length += ar.getAntecedent().size();
avg_interest += ar.getInterestingness();
}
System.out.println("\nNumber of Frequent Itemsets found: " + this.countFrequentItemsets);
System.out.println("Number of Association Rules generated: " + rules.size());
if (! rules.isEmpty()) {
System.out.println("Average Support: " + ( avg_sup / rules.size() ));
System.out.println("Average Confidence: " + ( avg_conf / rules.size() ));
System.out.println("Average Antecedents Length: " + ( avg_ant_length / rules.size() ));
System.out.println("Number of Covered Records (%): " + ( (100.0 * this.countCoveredRecords()) / this.dataset.getnTrans()));
System.out.println("Average Interestingness: " + ( avg_interest / rules.size() ));
}
}
/**
* <p>
* It returns the number of 1-Frequent Itemsets
* </p>
* @return A value representing the number of 1-Frequent Itemsets
*/
public int getNumberOfOneFrequentItemsets() {
return this.countOneFrequentItemsets;
}
/**
* <p>
* It returns the XML string representing the genetic learning log
* </p>
* @return A string containing the genetic learning text
*/
public String getGeneticLearningLog() {
return this.geneticLearningLog;
}
/**
* <p>
* It returns the mined fuzzy attributes once the genetic learning has been accomplished
* </p>
* @return An array representing the mined fuzzy attributes
*/
public ArrayList<FuzzyAttribute> getFuzzyAttributes() {
return this.fuzzyAttributes;
}
private void addNominalFuzzyAttributes(ArrayList<FuzzyAttribute> fuzzy_attributes) {
int attr, id_attr, id_region;
FuzzyRegion[] fuzzy_regions;
ArrayList<Integer> id_of_nominal_attributes;
id_of_nominal_attributes = this.dataset.getIDsOfNominalAttributes();
for (attr=0; attr < id_of_nominal_attributes.size(); attr++) {
id_attr = id_of_nominal_attributes.get(attr);
fuzzy_regions = new FuzzyRegion[((int) this.dataset.getMax(id_attr)) + 1];
for (id_region=0; id_region < fuzzy_regions.length; id_region++) {
fuzzy_regions[id_region] = new FuzzyRegion();
fuzzy_regions[id_region].setX0(this.dataset.getMin(id_attr) + id_region - 1);
fuzzy_regions[id_region].setX1(this.dataset.getMin(id_attr) + id_region);
fuzzy_regions[id_region].setX3(this.dataset.getMin(id_attr) + id_region + 1);
fuzzy_regions[id_region].setY(1.0);
fuzzy_regions[id_region].setLabel(this.dataset.getNominalValue(id_attr, id_region));
}
fuzzy_attributes.add( new FuzzyAttribute(id_attr, fuzzy_regions) );
}
}
private ArrayList<FuzzyAttribute> runGeneticAlgorithm() {
ArrayList<FuzzyAttribute> best_fuzzy_attrs = null;
ArrayList<Chromosome> pop;
this.geneticLearningLog = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
this.geneticLearningLog += "<genetic_learning>\n";
if (! this.idOfAttributes.isEmpty()) {
System.out.print("Initialing population... ");
pop = this.initializePopulation();
System.out.println("done [Evaluations: " + this.nEval + "].");
while (this.nEval < this.nEvaluations) {
this.nGenerations++;
System.out.print("Computing Generation #" + this.nGenerations + "... ");
this.crossover(pop);
this.mutate(pop);
best_fuzzy_attrs = this.select(pop);
System.out.println("done [Evaluations: " + this.nEval + "].");
}
/*for (int i=0; i < pop.size(); i++)
System.out.println("Chromosome #" + (i+1) + ":\n" + pop.get(i) + "\n");*/
}
this.geneticLearningLog += "</genetic_learning>";
return best_fuzzy_attrs;
}
private ArrayList<Chromosome> initializePopulation() {
int p, g, m, id_attr;
MembershipFunction[] membership_functions;
Gene[] genes;
Chromosome chr;
ArrayList<Chromosome> popInit;
popInit = new ArrayList<Chromosome>();
membership_functions = new MembershipFunction[ this.nFuzzyRegionsForNumericAttributes ];
genes = new Gene[ this.idOfAttributes.size() ];
for (p=0; p < this.popSize; p++) {
for (g=0; g < genes.length; g++) {
id_attr = this.idOfAttributes.get(g);
for (m=0; m < membership_functions.length; m++) {
membership_functions[m] = new MembershipFunction();
membership_functions[m].setC( Randomize.RanddoubleClosed(this.dataset.getMin(id_attr), this.dataset.getMax(id_attr)) );
membership_functions[m].setW( Randomize.RanddoubleClosed(0.0, (this.dataset.getMax(id_attr) - this.dataset.getMin(id_attr)) / 2.0) );
}
genes[g] = new Gene(membership_functions);
genes[g].sortMembershipFunctions();
}
chr = new Chromosome(genes);
this.evaluateFitness(chr);
popInit.add(chr);
}
return popInit;
}
private ArrayList<FuzzyAttribute> select(ArrayList<Chromosome> pop) {
Collections.sort(pop);
while (pop.size() > this.popSize)
pop.remove(this.popSize);
return ( this.transformIntoFuzzyAttributes( pop.get(0) ) );
}
private void crossover(ArrayList<Chromosome> pop) {
int i, j, index_best_chr, aux;
double best_fitness, sum_expected_values, rank_min, rank_max, factor, sum, rnd;
double[] expected_values;
int[] index_mating_pool;
Chromosome mom, dad;
Chromosome[] offsprings;
rank_min = 0.75;
rank_max = 2.0 - rank_min;
factor = (rank_max - rank_min) / (double)(pop.size() - 1);
expected_values = new double[ pop.size() ];
for (i=0; i < expected_values.length; i++)
expected_values[i] = 0.0;
sum_expected_values = 0.0;
for (i=0; i < pop.size(); i++) {
index_best_chr = -1;
best_fitness = 0.0;
for (j=0; j < pop.size(); j++) {
if ( (expected_values[j] == 0.0) && ( (index_best_chr == -1) || (pop.get(j).getFitness() > best_fitness) ) ) {
best_fitness = pop.get(j).getFitness();
index_best_chr = j;
}
}
expected_values[index_best_chr] = rank_min + (pop.size() - 1 - i) * factor;
sum_expected_values += expected_values[index_best_chr];
}
index_mating_pool = new int[ expected_values.length ];
for (i=0; i < index_mating_pool.length; i++) {
sum = 0.0;
rnd = Randomize.RanddoubleClosed(0.0, sum_expected_values);
for (j=0; j < expected_values.length; j++) {
sum += expected_values[j];
if (sum > rnd) break;
}
index_mating_pool[i] = j;
}
for (i=0; i < index_mating_pool.length; i++) {
j = Randomize.Randint(i, index_mating_pool.length);
aux = index_mating_pool[j];
index_mating_pool[j] = index_mating_pool[i];
index_mating_pool[i] = aux;
}
offsprings = new Chromosome[4];
for (i=0; i < (index_mating_pool.length / 2); i++) {
mom = pop.get( index_mating_pool[2 * i] );
dad = pop.get( index_mating_pool[2 * i + 1] );
if (Randomize.Rand() < this.pc) {
for (j=0; j < offsprings.length; j++) {
offsprings[j] = this.mma(j, mom.getGenes(), dad.getGenes());
this.evaluateFitness(offsprings[j]);
}
Arrays.sort(offsprings);
pop.add(offsprings[0]);
pop.add(offsprings[1]);
}
}
}
/**
* It implements the max-min-arithmetical crossover operator
*/
private Chromosome mma(int index, Gene[] mom_genes, Gene[] dad_genes) {
int g, m;
Gene[] offspring_genes;
MembershipFunction[] offspring_mfs, mom_mfs, dad_mfs;
offspring_mfs = new MembershipFunction[ this.nFuzzyRegionsForNumericAttributes ];
offspring_genes = new Gene[ this.idOfAttributes.size() ];
switch(index) {
case 0:
for (g=0; g < offspring_genes.length; g++) {
mom_mfs = mom_genes[g].getMembershipFunctions();
dad_mfs = dad_genes[g].getMembershipFunctions();
for (m=0; m < offspring_mfs.length; m++) {
offspring_mfs[m] = new MembershipFunction();
offspring_mfs[m].setC(this.d * mom_mfs[m].getC() + (1 - this.d) * dad_mfs[m].getC());
offspring_mfs[m].setW(this.d * mom_mfs[m].getW() + (1 - this.d) * dad_mfs[m].getW());
}
offspring_genes[g] = new Gene(offspring_mfs);
offspring_genes[g].sortMembershipFunctions();
}
break;
case 1:
for (g=0; g < offspring_genes.length; g++) {
mom_mfs = mom_genes[g].getMembershipFunctions();
dad_mfs = dad_genes[g].getMembershipFunctions();
for (m=0; m < offspring_mfs.length; m++) {
offspring_mfs[m] = new MembershipFunction();
offspring_mfs[m].setC((1 - this.d) * mom_mfs[m].getC() + this.d * dad_mfs[m].getC());
offspring_mfs[m].setW((1 - this.d) * mom_mfs[m].getW() + this.d * dad_mfs[m].getW());
}
offspring_genes[g] = new Gene(offspring_mfs);
offspring_genes[g].sortMembershipFunctions();
}
break;
case 2:
for (g=0; g < offspring_genes.length; g++) {
mom_mfs = mom_genes[g].getMembershipFunctions();
dad_mfs = dad_genes[g].getMembershipFunctions();
for (m=0; m < offspring_mfs.length; m++) {
offspring_mfs[m] = new MembershipFunction();
offspring_mfs[m].setC( Math.min(mom_mfs[m].getC(), dad_mfs[m].getC()) );
offspring_mfs[m].setW( Math.min(mom_mfs[m].getW(), dad_mfs[m].getW()) );
}
offspring_genes[g] = new Gene(offspring_mfs);
offspring_genes[g].sortMembershipFunctions();
}
break;
case 3:
for (g=0; g < offspring_genes.length; g++) {
mom_mfs = mom_genes[g].getMembershipFunctions();
dad_mfs = dad_genes[g].getMembershipFunctions();
for (m=0; m < offspring_mfs.length; m++) {
offspring_mfs[m] = new MembershipFunction();
offspring_mfs[m].setC( Math.max(mom_mfs[m].getC(), dad_mfs[m].getC()) );
offspring_mfs[m].setW( Math.max(mom_mfs[m].getW(), dad_mfs[m].getW()) );
}
offspring_genes[g] = new Gene(offspring_mfs);
offspring_genes[g].sortMembershipFunctions();
}
}
return ( new Chromosome(offspring_genes) );
}
/**
* It implements the one-point mutation operator
*/
private void mutate(ArrayList<Chromosome> pop) {
int p, id_attr, id_region;
double w, eps;
Chromosome chr;
Gene[] genes;
MembershipFunction[] membership_functions;
for (p=0; p < pop.size(); p++) {
if (Randomize.Rand() < this.pm) {
chr = new Chromosome( pop.get(p).getGenes() );
genes = chr.getGenes();
id_attr = Randomize.Randint(0, genes.length);
membership_functions = genes[id_attr].getMembershipFunctions();
id_region = Randomize.Randint(0, membership_functions.length);
w = membership_functions[id_region].getW();
eps = Randomize.RanddoubleClosed(-w, w);
if (Randomize.Rand() < 0.5) {
membership_functions[id_region].setC(membership_functions[id_region].getC() + eps);
genes[id_attr].sortMembershipFunctions();
}
else membership_functions[id_region].setW(w + eps);
this.evaluateFitness(chr);
pop.add(chr);
}
}
}
private void evaluateFitness(Chromosome c) {
int g, id_attr, num_one_frequent_itemsets;
double suitability, fitness;
Gene[] genes;
genes = c.getGenes();
suitability = 0.0;
for (g=0; g < genes.length; g++) {
id_attr = this.idOfAttributes.get(g);
suitability += ( genes[g].calculateOverlapFactor() + genes[g].calculateCoverageFactor(this.dataset.getMin(id_attr), this.dataset.getMax(id_attr)) );
}
num_one_frequent_itemsets = ( this.generateOneFrequentItemsets( new FuzzyDataset(this.dataset, this.transformIntoFuzzyAttributes(c) ), false) ).size();
fitness = num_one_frequent_itemsets / suitability;
c.setNumOneFrequentItemsets(num_one_frequent_itemsets);
c.setSuitability(suitability);
c.setFitness(fitness);
this.nEval++;
if ((this.nEval % this.evaluationStep) == 0) this.buildXMLRecord(fitness, num_one_frequent_itemsets, suitability);
}
private void buildXMLRecord(double fitness, int num_one_frequent_itemsets, double suitability) {
this.geneticLearningLog += "<log n_evaluations=\"" + this.nEval + "\" ";
this.geneticLearningLog += "n_generation=\"" + this.nGenerations + "\" ";
this.geneticLearningLog += "fitness=\"" + fitness + "\" ";
this.geneticLearningLog += "n_one_frequent_itemsets=\"" + num_one_frequent_itemsets + "\" ";
this.geneticLearningLog += "suitability=\"" + suitability + "\"/>\n";
}
private ArrayList<FuzzyAttribute> transformIntoFuzzyAttributes(Chromosome c) {
int g, m;
Gene[] genes;
MembershipFunction[] membership_functions;
FuzzyRegion[] fuzzy_regions;
ArrayList<FuzzyAttribute> fuzzy_attributes;
fuzzy_attributes = new ArrayList<FuzzyAttribute>();
genes = c.getGenes();
for (g=0; g < genes.length; g++) {
membership_functions = genes[g].getMembershipFunctions();
fuzzy_regions = new FuzzyRegion[ membership_functions.length ];
for (m=0; m < membership_functions.length; m++) {
fuzzy_regions[m] = new FuzzyRegion();
fuzzy_regions[m].setX0( membership_functions[m].getC() - membership_functions[m].getW() );
fuzzy_regions[m].setX1( membership_functions[m].getC() );
fuzzy_regions[m].setX3( membership_functions[m].getC() + membership_functions[m].getW() );
fuzzy_regions[m].setY(1.0);
fuzzy_regions[m].setLabel("LABEL_" + m);
}
fuzzy_attributes.add( new FuzzyAttribute(this.idOfAttributes.get(g), fuzzy_regions) );
}
return fuzzy_attributes;
}
private void runFuzzyApriori(FuzzyDataset fuzzyDataset) {
int pass = 0;
ArrayList<Itemset> current_frequent_itemsets;
current_frequent_itemsets = this.generateOneFrequentItemsets(fuzzyDataset, this.useMaxForOneFrequentItemsets);
this.countOneFrequentItemsets = current_frequent_itemsets.size();
this.countFrequentItemsets = this.countOneFrequentItemsets;
System.out.println("\nPass: " + (pass + 1) + "; Total Frequent Itemsets: " + this.countFrequentItemsets);
for (pass=1; (pass < this.dataset.getnVars()) && (current_frequent_itemsets.size() > 1); pass++) {
current_frequent_itemsets = this.generateCandidateItemsetsAndRules(fuzzyDataset, current_frequent_itemsets);
this.countFrequentItemsets += current_frequent_itemsets.size();
System.out.println("Pass: " + (pass + 1) + "; Total Frequent Itemsets: " + this.countFrequentItemsets + "; Total Association Rules: " + this.associationRulesSet.size());
}
}
private ArrayList<Itemset> generateOneFrequentItemsets(FuzzyDataset fuzzyDataset, boolean use_max_for_one_frequent_itemsets) {
int id_attr, id_region;
double max_support;
int[] num_fuzzy_regions;
Itemset itemset, best_itemset;
ArrayList<Itemset> one_frequent_itemsets;
num_fuzzy_regions = fuzzyDataset.getNumberOfFuzzyRegions();
one_frequent_itemsets = new ArrayList<Itemset>();
if (use_max_for_one_frequent_itemsets) {
for (id_attr=0; id_attr < fuzzyDataset.getNumberOfFuzzyAttributes(); id_attr++) {
best_itemset = new Itemset();
best_itemset.add( new Item(id_attr, 0) );
best_itemset.calculateSupport(fuzzyDataset);
max_support = best_itemset.getSupport();
for (id_region=1; id_region < num_fuzzy_regions[id_attr]; id_region++) {
itemset = new Itemset();
itemset.add( new Item(id_attr, id_region) );
itemset.calculateSupport(fuzzyDataset);
if (itemset.getSupport() > max_support) {
max_support = itemset.getSupport();
best_itemset = itemset;
}
}
if (max_support >= this.minSupport) one_frequent_itemsets.add(best_itemset);
}
}
else {
for (id_attr=0; id_attr < fuzzyDataset.getNumberOfFuzzyAttributes(); id_attr++) {
for (id_region=0; id_region < num_fuzzy_regions[id_attr]; id_region++) {
itemset = new Itemset();
itemset.add( new Item(id_attr, id_region) );
itemset.calculateSupport(fuzzyDataset);
if (itemset.getSupport() >= this.minSupport) one_frequent_itemsets.add(itemset);
}
}
}
return one_frequent_itemsets;
}
private ArrayList<Itemset> generateCandidateItemsetsAndRules(FuzzyDataset fuzzyDataset, ArrayList<Itemset> curr_freq_itemsets) {
int i, j, size;
boolean generated_rules;
Itemset i_itemset, j_itemset, new_itemset;
ArrayList<Integer> covered_tids;
ArrayList<Itemset> next_freq_itemsets;
size = curr_freq_itemsets.size();
next_freq_itemsets = new ArrayList<Itemset>();
for (i=0; i < size-1; i++) {
i_itemset = curr_freq_itemsets.get(i);
for (j=i+1; j < size; j++) {
j_itemset = curr_freq_itemsets.get(j);
if ( this.isCombinable(i_itemset, j_itemset, curr_freq_itemsets) ) {
new_itemset = i_itemset.clone();
new_itemset.add( ( j_itemset.get(j_itemset.size() - 1) ).clone() );
covered_tids = new_itemset.calculateSupport(fuzzyDataset);
if (new_itemset.getSupport() >= this.minSupport) {
generated_rules = this.generateRulesFromItemset(fuzzyDataset, new_itemset);
if (generated_rules) this.markCoveredRecords(covered_tids);
next_freq_itemsets.add(new_itemset);
}
}
}
}
return next_freq_itemsets;
}
private boolean generateRulesFromItemset(FuzzyDataset fuzzyDataset, Itemset curr_itemset) {
int i;
double rule_sup, ant_sup, rule_conf,cons_sup,interest;
boolean generated_rules = false;
Item i_item;
Itemset antecedent, consequent;
for (i=0; i < curr_itemset.size(); i++) {
antecedent = curr_itemset.clone();
i_item = antecedent.remove(i);
antecedent.calculateSupport(fuzzyDataset);
rule_sup = curr_itemset.getSupport();
ant_sup = antecedent.getSupport();
rule_conf = rule_sup / ant_sup;
if (rule_conf >= this.minConfidence) {
consequent = new Itemset();
consequent.add(i_item);
consequent.calculateSupport(fuzzyDataset);
cons_sup = consequent.getSupport();
interest = rule_conf * (rule_sup/cons_sup) * (1 - (rule_sup/this.dataset.getnTrans()));
this.associationRulesSet.add( new AssociationRule(antecedent, consequent, rule_sup, ant_sup, rule_conf,cons_sup,interest) );
if (! generated_rules) generated_rules = true;
}
}
return generated_rules;
}
private boolean isCombinable(Itemset i_itemset, Itemset j_itemset, ArrayList<Itemset> curr_freq_itemsets) {
int i;
Item i_item, j_item;
Itemset itemset;
if (i_itemset.size() != j_itemset.size()) return false;
i_item = i_itemset.get(i_itemset.size() - 1);
j_item = j_itemset.get(i_itemset.size() - 1);
if (i_item.getIDAttribute() >= j_item.getIDAttribute()) return false;
for (i=0; i < (i_itemset.size() - 1); i++) {
i_item = i_itemset.get(i);
j_item = j_itemset.get(i);
if (! i_item.equals(j_item)) return false;
}
itemset = i_itemset.clone();
itemset.add( ( j_itemset.get(i_itemset.size() - 1) ).clone() );
if ( this.pruning(itemset, curr_freq_itemsets) ) return false;
return true;
}
private boolean pruning(Itemset itemset, ArrayList<Itemset> curr_freq_itemsets) {
int i;
Itemset sub;
for (i=0; i < itemset.size() - 2; i++) {
sub = itemset.clone();
sub.remove(i);
if (! this.existingIntoFrequentItemsets(sub, curr_freq_itemsets)) return true;
}
return false;
}
private boolean existingIntoFrequentItemsets(Itemset itemset, ArrayList<Itemset> curr_freq_itemsets) {
int i;
Itemset its;
for (i=0; i < curr_freq_itemsets.size(); i++) {
its = curr_freq_itemsets.get(i);
if ( its.equals(itemset) ) return true;
}
return false;
}
private void markCoveredRecords(ArrayList<Integer> covered_tids) {
int i, t;
for (i=0; i < covered_tids.size(); i++) {
t = covered_tids.get(i);
if (! this.coveredRecords[t]) this.coveredRecords[t] = true;
}
}
private int countCoveredRecords() {
int i, cnt_covered_records = 0;
for (i=0; i < this.coveredRecords.length; i++) {
if (this.coveredRecords[i]) cnt_covered_records++;
}
return cnt_covered_records;
}
}