/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // Explore.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 1-8-2004. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Instance_Selection.Explore; import keel.Algorithms.Preprocess.Basic.*; import java.util.StringTokenizer; import java.util.Arrays; import org.core.*; public class Explore extends Metodo{ /*Own parameters of the algorithm*/ private long semilla; private int k; public Explore (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int i, j, l, m; int nClases; int tClase[]; int C = 0; boolean marcas[]; int nSel; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; int baraje[]; int pos, tmp; double coste_mejor, coste_actual; long tiempo = System.currentTimeMillis(); /*Getting the number of different classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; /*Get the different classes that exist in the set*/ tClase = new int[datosTrain.length]; for (i=0; i<datosTrain.length; i++) tClase[i] = Integer.MAX_VALUE; for (i=0; i<datosTrain.length; i++) { if (Arrays.binarySearch(tClase,clasesTrain[i]) < 0) { //not found tClase[C] = clasesTrain[i]; C++; Arrays.sort(tClase); } } /*Shuffle the train set to random the presentation of instances*/ Randomize.setSeed (semilla); baraje = new int[datosTrain.length]; for (i=0; i<datosTrain.length; i++) baraje[i] = i; for (i=0; i<datosTrain.length; i++) { pos = Randomize.Randint(i,datosTrain.length-1); tmp = baraje[i]; baraje[i] = baraje[pos]; baraje[pos] = tmp; } /*Inicialization of the flagged instaces vector to a posterior copy*/ marcas = new boolean[datosTrain.length]; for (i=0; i<datosTrain.length; i++) marcas[i] = false; if (datosTrain.length > 0) { marcas[baraje[0]] = true; //insert the first one always nSel = 1; } else { System.err.println("Input dataset is empty"); nSel = 0; } /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance must be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; conjR[l][j] = realTrain[m][j]; conjN[l][j] = nominalTrain[m][j]; conjM[l][j] = nulosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } coste_mejor = EncodingLength.evaluaEL (datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, conjS, conjR, conjN, conjM, clasesS, C, k, nClases, distanceEu); /*Body of the ELH algorithm. For each instane in T, it is included in T if improves the cost function Encoding Length*/ for (i=1; i<datosTrain.length; i++) { marcas[baraje[i]] = true; nSel++; /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance must be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; conjR[l][j] = realTrain[m][j]; conjN[l][j] = nominalTrain[m][j]; conjM[l][j] = nulosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } coste_actual = EncodingLength.evaluaEL (datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, conjS, conjR, conjN, conjM, clasesS, C, k, nClases, distanceEu); if (coste_actual < coste_mejor) coste_mejor = coste_actual; else { marcas[baraje[i]] = false; nSel--; } } /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance must be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; conjR[l][j] = realTrain[m][j]; conjN[l][j] = nominalTrain[m][j]; conjM[l][j] = nulosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } /*Do another shuffle for now eliminate instances*/ for (i=0; i<datosTrain.length; i++) baraje[i] = i; for (i=0; i<datosTrain.length; i++) { pos = Randomize.Randint(i,datosTrain.length-1); tmp = baraje[i]; baraje[i] = baraje[pos]; baraje[pos] = tmp; } /*2� part of ELGrow. Now, eliminate instances to see if the cost improves*/ for (i=0; i<datosTrain.length; i++) { if (marcas[baraje[i]]) { //It is in S marcas[baraje[i]] = false; nSel--; /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance must be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; conjR[l][j] = realTrain[m][j]; conjN[l][j] = nominalTrain[m][j]; conjM[l][j] = nulosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } coste_actual = EncodingLength.evaluaEL (datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, conjS, conjR, conjN, conjM, clasesS, C, k, nClases, distanceEu); if (coste_actual < coste_mejor) coste_mejor = coste_actual; else { marcas[baraje[i]] = true; nSel++; } } } /*3� part of Explore. Do 1000 randoms mutations and maintain the best results*/ for (i=0; i<1000; i++) { pos = Randomize.Randint (0, datosTrain.length-1); if (marcas[pos]) { marcas[pos] = false; nSel--; } else { marcas[pos] = true; nSel++; } /*Building S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance must be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; conjR[l][j] = realTrain[m][j]; conjN[l][j] = nominalTrain[m][j]; conjM[l][j] = nulosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } coste_actual = EncodingLength.evaluaEL (datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, conjS, conjR, conjN, conjM, clasesS, C, k, nClases, distanceEu); if (coste_actual < coste_mejor) coste_mejor = coste_actual; else { if (marcas[pos]) { marcas[pos] = false; nSel--; } else { marcas[pos] = true; nSel++; } } } /*Building the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance must be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; conjR[l][j] = realTrain[m][j]; conjN[l][j] = nominalTrain[m][j]; conjM[l][j] = nulosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } System.out.println("Explore "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); // COn conjS me vale. int trainRealClass[][]; int trainPrediction[][]; trainRealClass = new int[datosTrain.length][1]; trainPrediction = new int[datosTrain.length][1]; //Working on training for ( i=0; i<datosTrain.length; i++) { trainRealClass[i][0] = clasesTrain[i]; trainPrediction[i][0] = KNN.evaluate(datosTrain[i],conjS, nClases, clasesS, this.k); } KNN.writeOutput(ficheroSalida[0], trainRealClass, trainPrediction, entradas, salida, relation); //Working on test int realClass[][] = new int[datosTest.length][1]; int prediction[][] = new int[datosTest.length][1]; //Check time for (i=0; i<realClass.length; i++) { realClass[i][0] = clasesTest[i]; prediction[i][0]= KNN.evaluate(datosTest[i],conjS, nClases, clasesS, this.k); } KNN.writeOutput(ficheroSalida[1], realClass, prediction, entradas, salida, relation); } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroValidation = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the seed*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); semilla = Long.parseLong(tokens.nextToken().substring(1)); /*Getting the number of neighbors*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); k = Integer.parseInt(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; } }