/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Juli�n Luengo Mart�n 31/12/2005 * @version 0.3 * @since JDK 1.5 * </p> */ package keel.Algorithms.Preprocess.Missing_Values.MostCommonValue; import java.io.*; import java.util.*; import keel.Dataset.*; import keel.Algorithms.Preprocess.Basic.*; /** * <p> * This class computes the mean (numerical) or mode (nominal) value of the attributes with missing values for all classes * </p> */ public class MostCommonValue { double [] mean = null; double [] std_dev = null; double tempData = 0; String[][] X = null; //matrix of transformed data FreqList[] timesSeen = null; //matrix with frequences of attribute values String[] mostCommon; int ndatos = 0; int nentradas = 0; int tipo = 0; int direccion = 0; int nvariables = 0; int nsalidas = 0; InstanceSet IS; String input_train_name = new String(); String input_test_name = new String(); String output_train_name = new String(); String output_test_name = new String(); String temp = new String(); String data_out = new String(""); /** Creates a new instance of MostCommonValue * @param fileParam The path to the configuration file with all the parameters in KEEL format */ public MostCommonValue(String fileParam) { config_read(fileParam); IS = new InstanceSet(); } //Write data matrix X to disk, in KEEL format private void write_results(String output){ //File OutputFile = new File(output_train_name.substring(1, output_train_name.length()-1)); try { FileWriter file_write = new FileWriter(output); file_write.write(IS.getHeader()); //now, print the normalized data file_write.write("@data\n"); for(int i=0;i<ndatos;i++){ file_write.write(X[i][0]); for(int j=1;j<nvariables;j++){ file_write.write(","+X[i][j]); } file_write.write("\n"); } file_write.close(); } catch (IOException e) { System.out.println("IO exception = " + e ); System.exit(-1); } } //Read the patron file, and parse data into strings private void config_read(String fileParam){ File inputFile = new File(fileParam); if (inputFile == null || !inputFile.exists()) { System.out.println("parameter "+fileParam+" file doesn't exists!"); System.exit(-1); } //begin the configuration read from file try { FileReader file_reader = new FileReader(inputFile); BufferedReader buf_reader = new BufferedReader(file_reader); //FileWriter file_write = new FileWriter(outputFile); String line; do{ line = buf_reader.readLine(); }while(line.length()==0); //avoid empty lines for processing -> produce exec failure String out[]= line.split("algorithm = "); //alg_name = new String(out[1]); //catch the algorithm name //input & output filenames do{ line = buf_reader.readLine(); }while(line.length()==0); out= line.split("inputData = "); out = out[1].split("\\s\""); input_train_name = new String(out[0].substring(1, out[0].length()-1)); input_test_name = new String(out[1].substring(0, out[1].length()-1)); if(input_test_name.charAt(input_test_name.length()-1)=='"') input_test_name = input_test_name.substring(0,input_test_name.length()-1); do{ line = buf_reader.readLine(); }while(line.length()==0); out = line.split("outputData = "); out = out[1].split("\\s\""); output_train_name = new String(out[0].substring(1, out[0].length()-1)); output_test_name = new String(out[1].substring(0, out[1].length()-1)); if(output_test_name.charAt(output_test_name.length()-1)=='"') output_test_name = output_test_name.substring(0,output_test_name.length()-1); file_reader.close(); } catch (IOException e) { System.out.println("IO exception = " + e ); System.exit(-1); } } /** * <p> * Takes a value and checks if it belongs to the attribute interval. If not, it returns the nearest limit. * IT DOES NOT CHECK IF THE ATTRIBUTE IS NOT NOMINAL * </p> * @param value the value to be checked * @param a the attribute to which the value will be checked against * @return the original value if it was in the interval limits of the attribute, or the nearest boundary limit otherwise. */ public double boundValueToAttributeLimits(double value, Attribute a){ if(value < a.getMinAttribute()) value = a.getMinAttribute(); else if(value > a.getMaxAttribute()) value = a.getMaxAttribute(); return value; } /** * <p> * Process the training and test files provided in the parameters file to the constructor. * </p> */ public void process(){ ValueFreq vf; double mean; try { // Load in memory a dataset that contains a classification problem IS.readSet(input_train_name,true); int in = 0; int out = 0; ndatos = IS.getNumInstances(); nvariables = Attributes.getNumAttributes(); nentradas = Attributes.getInputNumAttributes(); nsalidas = Attributes.getOutputNumAttributes(); X = new String[ndatos][nvariables];//matrix with transformed data timesSeen = new FreqList[nvariables]; mostCommon = new String[nvariables]; for(int j=0;j<nvariables;j++){ timesSeen[j] = new FreqList(); } //First, create a reference list with all values //for each attribute, so we can pick the most common one for(int i = 0;i < ndatos;i++){ Instance inst = IS.getInstance(i); in = 0; out = 0; for(int j = 0; j < nvariables;j++){ Attribute a = Attributes.getAttribute(j); direccion = a.getDirectionAttribute(); tipo = a.getType(); if(direccion == Attribute.INPUT){ if(tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)){ timesSeen[j].AddElement( new String(String.valueOf(inst.getInputRealValues(in))) ); } else{ if(!inst.getInputMissingValues(in)){ timesSeen[j].AddElement( inst.getInputNominalValues(in)); } else{ //do nothing } } in++; } else{ if(direccion == Attribute.OUTPUT){ if(tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)){ timesSeen[j].AddElement(new String(String.valueOf(inst.getOutputRealValues(out)))); } else{ if(!inst.getOutputMissingValues(out)){ timesSeen[j].AddElement(inst.getOutputNominalValues(out)); } else{ //do nothing } } out++; } /*else{ What should we do with non-defined direction values? }*/ } } } //take for each attribute the most common value, so it //can be taken quickly ValueFreq elem = null; for(int k=0;k<nvariables;k++){ elem = timesSeen[k].mostCommon(); if(elem!=null) mostCommon[k] = elem.getValue(); else mostCommon[k] = "?"; //this attribute has no good values (all are missing data) } //now, search for missed data, and replace them with //the most common value for(int i = 0;i < ndatos;i++){ Instance inst = IS.getInstance(i); in = 0; out = 0; for(int j = 0; j < nvariables;j++){ Attribute a = Attributes.getAttribute(j); direccion = a.getDirectionAttribute(); tipo = a.getType(); if(direccion == Attribute.INPUT){ if(tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)){ X[i][j] = new String(String.valueOf(inst.getInputRealValues(in))); } else{ if(!inst.getInputMissingValues(in)) X[i][j] = inst.getInputNominalValues(in); else X[i][j] = new String(mostCommon[j]); //replace missing data } in++; } else{ if(direccion == Attribute.OUTPUT){ if(tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)){ X[i][j] = new String(String.valueOf(inst.getOutputRealValues(out))); } else{ if(!inst.getOutputMissingValues(out)) X[i][j] = inst.getOutputNominalValues(out); else{ if(tipo==Attribute.NOMINAL) X[i][j] = new String(mostCommon[j]); //replace missing data else{ timesSeen[j].reset(); mean = 0; while(!timesSeen[j].outOfBounds()){ vf = timesSeen[j].getCurrent(); mean += (new Double(vf.getValue()).doubleValue()*vf.getFreq()); } mean = mean / (double)timesSeen[j].totalElems(); mean = boundValueToAttributeLimits(mean,a); X[i][j] = new String(String.valueOf(mean)); } } } out++; } } } } }catch (Exception e){ System.out.println("Dataset exception = " + e ); System.exit(-1); } write_results(output_train_name); /***************************************************************************************/ //does a test file associated exist? if(input_train_name.compareTo(input_test_name)!=0){ try { // Load in memory a dataset that contains a classification problem IS.readSet(input_test_name,false); int in = 0; int out = 0; ndatos = IS.getNumInstances(); nvariables = Attributes.getNumAttributes(); nentradas = Attributes.getInputNumAttributes(); nsalidas = Attributes.getOutputNumAttributes(); X = new String[ndatos][nvariables];//matrix with transformed data timesSeen = new FreqList[nvariables]; mostCommon = new String[nvariables]; for(int j=0;j<nvariables;j++){ timesSeen[j] = new FreqList(); } //First, create a reference list with all values //for each attribute, so we can pick the most common one for(int i = 0;i < ndatos;i++){ Instance inst = IS.getInstance(i); in = 0; out = 0; for(int j = 0; j < nvariables;j++){ Attribute a = Attributes.getAttribute(j); direccion = a.getDirectionAttribute(); tipo = a.getType(); if(direccion == Attribute.INPUT){ if(tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)){ timesSeen[j].AddElement( new String(String.valueOf(inst.getInputRealValues(in))) ); } else{ if(!inst.getInputMissingValues(in)){ timesSeen[j].AddElement( inst.getInputNominalValues(in)); } else{ //do nothing } } in++; } else{ if(direccion == Attribute.OUTPUT){ if(tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)){ timesSeen[j].AddElement(new String(String.valueOf(inst.getOutputRealValues(out)))); } else{ if(!inst.getOutputMissingValues(out)){ timesSeen[j].AddElement(inst.getOutputNominalValues(out)); } else{ //do nothing } } out++; } /*else{ What should we do with non-defined direction values? }*/ } } } //take for each attribute the most common value, so it //can be taken quickly ValueFreq elem = null; for(int k=0;k<nvariables;k++){ elem = timesSeen[k].mostCommon(); if(elem!=null) mostCommon[k] = elem.getValue(); else mostCommon[k] = "?"; //this attribute has no good values (all are missing data) } //now, search for missed data, and replace them with //the most common value for(int i = 0;i < ndatos;i++){ Instance inst = IS.getInstance(i); in = 0; out = 0; for(int j = 0; j < nvariables;j++){ Attribute a = Attributes.getAttribute(j); direccion = a.getDirectionAttribute(); tipo = a.getType(); if(direccion == Attribute.INPUT){ if(tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)){ X[i][j] = new String(String.valueOf(inst.getInputRealValues(in))); } else{ if(!inst.getInputMissingValues(in)) X[i][j] = inst.getInputNominalValues(in); else X[i][j] = new String(mostCommon[j]); //replace missing data } in++; } else{ if(direccion == Attribute.OUTPUT){ if(tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)){ X[i][j] = new String(String.valueOf(inst.getOutputRealValues(out))); } else{ if(!inst.getOutputMissingValues(out)) X[i][j] = inst.getOutputNominalValues(out); else{ if(tipo==Attribute.NOMINAL) X[i][j] = new String(mostCommon[j]); //replace missing data else{ timesSeen[j].reset(); mean = 0; while(!timesSeen[j].outOfBounds()){ vf = timesSeen[j].getCurrent(); mean += (new Double(vf.getValue()).doubleValue()*vf.getFreq()); } mean = mean / (double)timesSeen[j].totalElems(); mean = boundValueToAttributeLimits(mean,a); X[i][j] = new String(String.valueOf(mean)); } } } out++; } } } } }catch (Exception e){ System.out.println("Dataset exception = " + e ); System.exit(-1); } write_results(output_test_name); } } }