package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.ClassifierNSLV; import java.io.*; import java.util.Random; import org.core.Randomize; public class populationinteger implements Cloneable { /** * <p> * It contains the methods for handling the integer population of individuals * </p> */ double prob_mutacion; double prob_cruce; int elitismo; int n_individuos; int[] tamano; boolean[] modificado; double[] valoracion; int rango; int[][] individuos; populationinteger (){ prob_mutacion = 0.0; prob_cruce = 0.0; elitismo = 0; n_individuos = 0; tamano = null; modificado = null; valoracion = null; individuos = null; rango = 0; } populationinteger (int rang, double mut, double cruce, int eli, int n){ prob_mutacion = mut; prob_cruce = cruce; elitismo = eli; n_individuos = n; rango = rang; tamano = new int[n_individuos]; for (int i=0; i<n_individuos; i++) tamano[i] = 0; modificado = new boolean[n_individuos]; for (int i=0; i<n_individuos; i++) modificado[i] = true; valoracion = new double[n_individuos]; individuos = new int[n_individuos][]; for (int i=0; i<n_individuos; i++) individuos[i] = null; } populationinteger (int rang, double mut, double cruce, int eli, int n, int tama){ prob_mutacion = mut; prob_cruce = cruce; elitismo = eli; n_individuos = n; rango = rang; tamano= new int[n_individuos]; for (int i=0; i<n_individuos; i++) tamano[i] = tama; modificado = new boolean[n_individuos]; for (int i=0; i<n_individuos; i++) modificado[i] = true; valoracion = new double[n_individuos]; individuos = new int[n_individuos][]; for (int i=0; i<n_individuos; i++) individuos[i] = new int[tamano[i]]; } populationinteger (populationinteger x){ prob_mutacion = x.prob_mutacion; prob_cruce = x.prob_cruce; elitismo = x. elitismo; n_individuos = x.n_individuos; rango = x.rango; tamano = new int[n_individuos]; for (int i=0; i<n_individuos; i++) tamano[i] = x.tamano[i]; modificado= new boolean[n_individuos]; for (int i=0; i<n_individuos; i++) modificado[i] = x.modificado[i]; valoracion = new double[n_individuos]; for (int i=0; i<n_individuos; i++) valoracion[i] = x.valoracion[i]; individuos = new int[n_individuos][]; for (int i=0; i<n_individuos; i++) { if (tamano[i]>0){ individuos[i] = new int[tamano[i]]; for (int j=0; j<tamano[i]; j++) individuos[i][j] = x.individuos[i][j]; } } } public Object clone(){ populationinteger obj = null; try{ obj = (populationinteger) super.clone(); }catch (CloneNotSupportedException ex){ System.out.println ("\nNo se puede duplicar el objeto.\n"); } obj.tamano = (int[]) obj.tamano.clone(); obj.modificado = (boolean[]) obj.modificado.clone(); obj.valoracion = (double[]) obj.valoracion.clone(); obj.individuos = (int[][]) obj.individuos.clone(); for (int i=0; i<obj.individuos.length; i++){ obj.individuos[i] = (int[]) obj.individuos[i].clone(); } return obj; } public int[] Individual (int i, Int_t tama){ tama.value = tamano[i]; return individuos[i]; } public boolean Modified (int i){ return modificado[i]; } public void Pass (int i, populationinteger x, int j){ tamano[i] = x.tamano[i]; individuos[i] = new int[tamano[i]]; for (int k=0; k<tamano[i]; k++) individuos[i][k] = x.individuos[j][k]; } public void Swap (int i, int j){ Swap_int (tamano, i, j); Swap_bool (modificado, i, j); Swap_double (valoracion, i, j); int[] p = individuos[i]; individuos[i] = individuos[j]; individuos[j] = p; } public void Swap_int (int[] v, int i, int j){ int aux = v[i]; v[i] = v[j]; v[j] = aux; } public void Swap_double (double[] v, int i, int j){ double aux = v[i]; v[i] = v[j]; v[j] = aux; } public void Swap_bool (boolean[] v, int i, int j){ boolean aux = v[i]; v[i] = v[j]; v[j] = aux; } public int[] Code (int i, int[] vector, int pos){ vector[pos] = tamano[i]; int[] v = new int[vector[pos]]; for (int j=0; j<vector[pos]; j++) v[j] = individuos[i][j]; return v; } public void Sort (){ for (int i=0; i<n_individuos-1; i++){ for (int j=n_individuos-1; j>i; j--){ if (valoracion[j]>valoracion[j-1]) Swap(j, j-1); } } } public void Paint (int i){ for (int j=0; j<tamano[i]; j++) System.out.println (individuos[i][j]+" "); System.out.println ("\n"); } public void PaintFitness (int i){ System.out.println ("Fitness: "+valoracion[i]+"\n"); } public void PaintInFile (int i) throws IOException{ FileOutputStream f; String cadena; try { f = new FileOutputStream("slave.log"); } catch(FileNotFoundException e) { System.out.println("No se pudo crear.\n"); return; } for (int j=0; j<tamano[i]; j++){ cadena = ""+individuos[i][j]+" "; byte[] buf = cadena.getBytes(); f.write(buf); } cadena = "\n"; byte[] buf = cadena.getBytes(); f.write(buf); f.close(); } public void PaintFitnessInFile (int i) throws IOException{ FileOutputStream f; String cadena; try { f = new FileOutputStream("slave.log"); } catch(FileNotFoundException e) { System.out.println("No se pudo crear.\n"); return; } cadena = "Fitness: "+valoracion[i]+"\n"; byte[] buf = cadena.getBytes(); f.write(buf); f.close(); } public void PutValue (int indiv, int bit, int value){ individuos[indiv][bit] = value; } public int GetValue (int indiv, int bit){ return individuos[indiv][bit]; } public void RandomInitialPopulation (){ for (int i=0; i<n_individuos; i++){ for (int j=0; j<tamano[i]; j++) individuos[i][j] = i % rango; } } public void RandomInitialPopulation (int consecuente){ for (int i=0; i<n_individuos; i++){ for (int j=0; j<tamano[i]; j++) individuos[i][j] = consecuente; } } private boolean Probability (double x){ //Random rand = new Random(); double a = Randomize.Rand(); return (a <= x); } private int Select_Random_Individual (int n, int menos_este, int eli){ int nd = n; //Random rand = new Random(); int a = Randomize.Randint (0, nd); while (a==menos_este || a<eli) a = Randomize.Randint (0, nd); return a; } private int CrossPoint (int n){ //Random rand = new Random(); return Randomize.Randint (0, n); } private void CrossPoint2 (int n, Int_t a, Int_t b){ //Random rand = new Random(); int nd = n; a.value = Randomize.Randint (0, nd); b.value = Randomize.Randint (0, nd); if (a.value > b.value){ int aux = a.value; a.value = b.value; b.value = aux; } } /** * <p> * Stationary uniform mutation operator * </p> */ public void UniformMutation_Stationary (){ int aux; //Random rand = new Random(); for (int i=n_individuos-2; i<n_individuos; i++){ for (int j=0; j<tamano[i]; j++){ if (Probability (prob_mutacion)){ do{ //aux = (int) Randomize.Rand () % rango; aux = Randomize.Randint(0, rango); }while (aux == individuos[i][j]); individuos[i][j] = aux; modificado[i] = true; } } } } /** * <p> * Given the individuals "indiv1" and "indiv2", it selects two points * exchanging their central zones. * </p> * @param indiv1 int An individual * @param indiv2 int An individual */ public void TwoPointsCrossover_Stationary (int indiv1, int indiv2){ int i=n_individuos-2; modificado[i] = true; modificado[i+1] = true; individuos[i][0] = individuos[indiv1][0]; individuos[i+1][0] = individuos[indiv2][0]; } }