/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // DROP3.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 16-7-2004. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Instance_Selection.DROP3; import keel.Algorithms.Preprocess.Basic.*; import org.core.*; import java.util.StringTokenizer; import java.util.Vector; import java.util.Arrays; public class DROP3 extends Metodo { /*Own parameters of the algorithm*/ private int k; public DROP3 (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int i, j, l, m, n, o; int nClases; int claseObt; boolean marcas[]; int nSel; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; int vecinos[][]; Vector asociados[]; int aciertosSin; int vecinosTemp[]; double distTemp[]; double dist, bestD; boolean parar; Referencia orden[]; int mayoria; long tiempo = System.currentTimeMillis(); /*Getting the number of different classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; /*Inicialization of the instance flagged vector of the S set*/ marcas = new boolean[datosTrain.length]; for (i=0; i<datosTrain.length; i++) { marcas[i] = true; } nSel = datosTrain.length; /*Do ENN before sorting*/ for (i=0; i<datosTrain.length; i++) { claseObt = KNN.evaluacionKNN2 (k, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], nClases, distanceEu); if (claseObt != clasesTrain[i]) { //is included in the solution set if it is agree with your mayority marcas[i] = false; nSel--; } } /*Construction of an instance vector with distances to the nearest enemy*/ orden = new Referencia[datosTrain.length]; for (i=0; i<datosTrain.length; i++) { bestD = Double.POSITIVE_INFINITY; for (j=0; j<datosTrain.length; j++) { if (clasesTrain[i] != clasesTrain[j]) { dist = KNN.distancia (datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu); if (dist < bestD) bestD = dist; } } orden[i] = new Referencia (i, bestD); } /*Sorting the previous vector*/ Arrays.sort(orden); /*Inicialization of the data structures of neighbors and associates*/ distTemp = new double[k+1]; vecinosTemp = new int[k+1]; vecinos = new int[datosTrain.length][k+1]; asociados = new Vector[datosTrain.length]; for (i=0; i<datosTrain.length; i++) asociados[i] = new Vector (); /*Body of the algorithm DROP3 (same as DROP2).*/ for (i=0; i<datosTrain.length; i++) { /*Get the k+1 nearest neighbors of each instance*/ if (marcas[i]) { KNN.evaluacionKNN2 (k+1, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], nClases, distanceEu, vecinos[i]); for (j=0; j<vecinos[i].length; j++) { if (vecinos[i][j] >= 0) asociados[vecinos[i][j]].addElement (new Referencia (i,0)); } } } /*Check if delete or not the instances considering the WITH and WITHOUT sets*/ for (o=0; o<datosTrain.length; o++){ i = orden[o].entero; if (marcas[i]) { //only for instances haven�t noise filtered aciertosSin = 0; marcas[i] = false; nSel--; /*Construction of S set from the temporaly flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance will evaluate for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; conjR[l][j] = realTrain[m][j]; conjN[l][j] = nominalTrain[m][j]; conjM[l][j] = nulosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } marcas[i] = true; nSel++; /*Evaluation of associates without the instance in T*/ for (j=0; j<k+1; j++) { if (vecinos[i][j] >= 0) { claseObt = KNN.evaluacionKNN2 (k, conjS, conjR, conjN, conjM, clasesS, datosTrain[vecinos[i][j]], realTrain[vecinos[i][j]], nominalTrain[vecinos[i][j]], nulosTrain[vecinos[i][j]], nClases, distanceEu); if (claseObt == clasesTrain[vecinos[i][j]]) //classify it correctly aciertosSin++; } } mayoria = (k+1) / 2; if (aciertosSin > mayoria) { /*Delete P from S*/ marcas[i] = false; nSel--; /*For each associate of P, search a new nearest neighbor*/ for (j=0; j<asociados[i].size(); j++) { for (l=0; l<k+1; l++) { vecinosTemp[l] = vecinos[((Referencia)(asociados[i].elementAt(j))).entero][l]; vecinos[((Referencia)(asociados[i].elementAt(j))).entero][l] = -1; distTemp[l] = Double.POSITIVE_INFINITY; } for (l=0; l<datosTrain.length; l++) { if (marcas[l]) { //it is in S dist = KNN.distancia (datosTrain[((Referencia)(asociados[i].elementAt(j))).entero], realTrain[((Referencia)(asociados[i].elementAt(j))).entero], nominalTrain[((Referencia)(asociados[i].elementAt(j))).entero], nulosTrain[((Referencia)(asociados[i].elementAt(j))).entero], datosTrain[l], realTrain[l], nominalTrain[l], nulosTrain[l], distanceEu); parar = false; /*Calculate the nearest neighbors in this situation again*/ for (m=0; m<(k+1) && !parar; m++) { if (dist < distTemp[m]) { parar = true; for (n=m+1; n<k+1; n++) { distTemp[n] = distTemp[n-1]; vecinos[((Referencia)(asociados[i].elementAt(j))).entero][n] = vecinos[((Referencia)(asociados[i].elementAt(j))).entero][n-1]; } distTemp[m] = dist; vecinos[((Referencia)(asociados[i].elementAt(j))).entero][m] = l; } } } } /*Add to the list of associates of the new neighbor this instance*/ for (l=0; l<k+1; l++) { parar = false; for (m=0; m<asociados[vecinosTemp[l]].size() && !parar; m++) { if (((Referencia)(asociados[vecinosTemp[l]].elementAt(m))).entero == ((Referencia)(asociados[i].elementAt(j))).entero && vecinosTemp[l] != i) { asociados[vecinosTemp[l]].removeElementAt(m); parar = true; } } } for (l=0; l<k+1; l++) { asociados[vecinos[((Referencia)(asociados[i].elementAt(j))).entero][l]].addElement(new Referencia (((Referencia)(asociados[i].elementAt(j))).entero,0)); } } } } } /*Construction of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance will evaluate for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; conjR[l][j] = realTrain[m][j]; conjN[l][j] = nominalTrain[m][j]; conjM[l][j] = nulosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } System.out.println("DROP3 "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); // COn conjS me vale. int trainRealClass[][]; int trainPrediction[][]; trainRealClass = new int[datosTrain.length][1]; trainPrediction = new int[datosTrain.length][1]; //Working on training for ( i=0; i<datosTrain.length; i++) { trainRealClass[i][0] = clasesTrain[i]; trainPrediction[i][0] = KNN.evaluate(datosTrain[i],conjS, nClases, clasesS, this.k); } KNN.writeOutput(ficheroSalida[0], trainRealClass, trainPrediction, entradas, salida, relation); //Working on test int realClass[][] = new int[datosTest.length][1]; int prediction[][] = new int[datosTest.length][1]; //Check time for (i=0; i<realClass.length; i++) { realClass[i][0] = clasesTest[i]; prediction[i][0]= KNN.evaluate(datosTest[i],conjS, nClases, clasesS, this.k); } KNN.writeOutput(ficheroSalida[1], realClass, prediction, entradas, salida, relation); } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroValidation = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the number of neighbors*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); k = Integer.parseInt(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; } }