/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // MCNN.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 7-4-2007. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Preprocess.Instance_Selection.MCNN; import keel.Algorithms.Preprocess.Basic.*; import org.core.*; import java.util.*; public class MCNN extends Metodo { public MCNN (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int i, j, l, m; int nClases; boolean marcas[]; int nSel; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; boolean St[]; boolean Sm[]; boolean Sr[]; double centers[][]; int contadores[]; int represent[]; double minDist, distan; int pos; boolean paso1, paso2, entra; long tiempo = System.currentTimeMillis(); /*Getting the number of differents classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; /*Inicialization of the flagged instaces vector for a posterior elimination*/ marcas = new boolean[datosTrain.length]; for (i=0; i<datosTrain.length; i++) marcas[i] = false; nSel = 0; St = new boolean[datosTrain.length]; Sr = new boolean[datosTrain.length]; Sm = new boolean[datosTrain.length]; for (i=0; i<datosTrain.length; i++) { St[i] = true; } centers = new double[nClases][datosTrain[0].length]; contadores = new int[nClases]; represent = new int[nClases]; do { do { for (i = 0; i < nClases; i++) { Arrays.fill(centers[i], 0.0); } Arrays.fill(contadores, 0); /*Compute the centroids of the instances selected*/ for (i = 0; i < datosTrain.length; i++) { if (St[i]) { for (j = 0; j < datosTrain[0].length; j++) { centers[clasesTrain[i]][j] += datosTrain[i][j]; } contadores[clasesTrain[i]]++; } } for (i = 0; i < nClases; i++) { for (j = 0; j < datosTrain[0].length; j++) { centers[i][j] /= (double) contadores[i]; } } /*Search the nearest instance to each center of its own class*/ for (i = 0; i < nClases; i++) { minDist = Double.POSITIVE_INFINITY; pos = -1; for (j = 0; j < datosTrain.length; j++) { if (clasesTrain[j] == i) { distan = KNN.distancia(centers[i], datosTrain[j]); if (distan < minDist) { minDist = distan; pos = j; } } } represent[i] = pos; } Arrays.fill(Sr, false); Arrays.fill(Sm, false); /*Classify the instances belonging to St*/ paso1 = false; for (i = 0; i < datosTrain.length; i++) { if (St[i]) { minDist = Double.POSITIVE_INFINITY; pos = -1; for (j = 0; j < nClases; j++) { if (represent[j] != -1) { distan = KNN.distancia(datosTrain[represent[j]], datosTrain[i]); } else { distan = Double.POSITIVE_INFINITY; } if (distan < minDist) { minDist = distan; pos = j; } } if (clasesTrain[i] == pos) { Sr[i] = true; } else { Sm[i] = true; paso1 = true; } } } for (i = 0; i < datosTrain.length; i++) { St[i] = Sr[i]; } } while (paso1 == true); /*Include the most representative points to the selected subset*/ entra = false; for (i = 0; i < nClases; i++) { if (represent[i] >= 0) { if (!marcas[represent[i]]) { marcas[represent[i]] = true; nSel++; entra = true; } } } Arrays.fill(Sr, false); Arrays.fill(Sm, false); if (nSel == 0) { nSel = 1; marcas[0] = true; } /*Classify the instance belonging to the training data set*/ paso2 = false; for (i = 0; i < datosTrain.length; i++) { minDist = Double.POSITIVE_INFINITY; pos = -1; for (j = 0; j < datosTrain.length; j++) { if (marcas[j]) { distan = KNN.distancia(datosTrain[i], datosTrain[j]); if (distan < minDist) { minDist = distan; pos = j; } } } if (pos >= 0 && clasesTrain[i] == clasesTrain[pos]) { Sr[i] = true; } else { Sm[i] = true; paso2 = true; } } for (i = 0; i < datosTrain.length; i++) { St[i] = Sm[i]; } } while (paso2 == true && entra == true); /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance must be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; conjR[l][j] = realTrain[m][j]; conjN[l][j] = nominalTrain[m][j]; conjM[l][j] = nulosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } System.out.println("MCNN "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); } }