/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
//
// MENN.java
//
// Salvador Garc�a L�pez
//
// Created by Salvador Garc�a L�pez 9-4-2008.
// Copyright (c) 2004 __MyCompanyName__. All rights reserved.
//
package keel.Algorithms.Instance_Selection.MENN;
import keel.Algorithms.Preprocess.Basic.*;
import org.core.*;
import java.util.StringTokenizer;
public class MENN extends Metodo {
/*Own parameters of the algorithm*/
private int k;
public MENN (String ficheroScript) {
super (ficheroScript);
}
public void ejecutar () {
int i, j, l;
int nClases;
boolean marcas[];
int nSel = 0;
double conjS[][];
double conjR[][];
int conjN[][];
boolean conjM[][];
int clasesS[];
int vecinos[];
boolean parar;
double dist;
long tiempo = System.currentTimeMillis();
/*Inicialization of the flagged instances vector for a posterior copy*/
marcas = new boolean[datosTrain.length];
for (i=0; i<datosTrain.length; i++)
marcas[i] = true;
nSel = datosTrain.length;
/*Getting the number of differents classes*/
nClases = 0;
for (i=0; i<clasesTrain.length; i++)
if (clasesTrain[i] > nClases)
nClases = clasesTrain[i];
nClases++;
vecinos = new int[k];
/*Body of the algorithm. For each instance in T, search the correspond class conform his mayority
from the nearest neighborhood. Is it is positive, the instance is selected.*/
for (i=0; i<datosTrain.length; i++) {
/*Apply KNN to the instance*/
KNN.evaluacionKNN2 (k, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], nClases, distanceEu, vecinos);
parar = false;
for (j=0; j<vecinos.length && !parar; j++) {
if (vecinos[j] == -1 || clasesTrain[vecinos[j]] != clasesTrain[i]) {
parar = true;
nSel--;
marcas[i] = false;
}
}
if (vecinos[k-1] >= 0) {
dist = KNN.distancia(datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[vecinos[k-1]], realTrain[vecinos[k-1]], nominalTrain[vecinos[k-1]], nulosTrain[vecinos[k-1]], distanceEu);
} else {
dist = Double.POSITIVE_INFINITY;
}
for (j=0; j<datosTrain.length && !parar; j++) {
if (i != j && dist == KNN.distancia(datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu)) {
if (clasesTrain[j] != clasesTrain[i]) {
parar = true;
nSel--;
marcas[i] = false;
}
}
}
}
/*Building of the S set from the flags*/
conjS = new double[nSel][datosTrain[0].length];
conjR = new double[nSel][datosTrain[0].length];
conjN = new int[nSel][datosTrain[0].length];
conjM = new boolean[nSel][datosTrain[0].length];
clasesS = new int[nSel];
for (i=0, l=0; i<datosTrain.length; i++) {
if (marcas[i]) { //the instance will be copied to the solution
for (j=0; j<datosTrain[0].length; j++) {
conjS[l][j] = datosTrain[i][j];
conjR[l][j] = realTrain[i][j];
conjN[l][j] = nominalTrain[i][j];
conjM[l][j] = nulosTrain[i][j];
}
clasesS[l] = clasesTrain[i];
l++;
}
}
System.out.println("MENN "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s");
// COn conjS me vale.
int trainRealClass[][];
int trainPrediction[][];
trainRealClass = new int[datosTrain.length][1];
trainPrediction = new int[datosTrain.length][1];
//Working on training
for ( i=0; i<datosTrain.length; i++) {
trainRealClass[i][0] = clasesTrain[i];
trainPrediction[i][0] = KNN.evaluate(datosTrain[i],conjS, nClases, clasesS, this.k);
}
KNN.writeOutput(ficheroSalida[0], trainRealClass, trainPrediction, entradas, salida, relation);
//Working on test
int realClass[][] = new int[datosTest.length][1];
int prediction[][] = new int[datosTest.length][1];
//Check time
for (i=0; i<realClass.length; i++) {
realClass[i][0] = clasesTest[i];
prediction[i][0]= KNN.evaluate(datosTest[i],conjS, nClases, clasesS, this.k);
}
KNN.writeOutput(ficheroSalida[1], realClass, prediction, entradas, salida, relation);
}
public void leerConfiguracion (String ficheroScript) {
String fichero, linea, token;
StringTokenizer lineasFichero, tokens;
byte line[];
int i, j;
ficheroSalida = new String[2];
fichero = Fichero.leeFichero (ficheroScript);
lineasFichero = new StringTokenizer (fichero,"\n\r");
lineasFichero.nextToken();
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
token = tokens.nextToken();
/*Getting the names of the training and test files*/
line = token.getBytes();
for (i=0; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroTraining = new String (line,i,j-i);
for (i=j+1; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroValidation = new String (line,i,j-i);
for (i=j+1; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroTest = new String (line,i,j-i);
/*Getting the path and base name of the results files*/
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
token = tokens.nextToken();
/*Getting the names of output files*/
line = token.getBytes();
for (i=0; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroSalida[0] = new String (line,i,j-i);
for (i=j+1; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroSalida[1] = new String (line,i,j-i);
/*Getting the number of neighbors*/
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
k = Integer.parseInt(tokens.nextToken().substring(1));
/*Getting the type of distance function*/
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false;
}
}