/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet;
/**
* <p>
* @author Written by Pedro Antonio Gutierrez Penya, Aaron Ruiz Mora (University of Cordoba) 17/07/2007
* @version 0.1
* @since JDK1.5
* </p>
*/
public class ExpLayer extends LinkedLayer {
/**
* <p>
* Represents a neural net layer with all the neurons of ExpNeuron type
* </p>
*/
/////////////////////////////////////////////////////////////////
// --------------------------------------- Serialization constant
/////////////////////////////////////////////////////////////////
/** Generated by Eclipse */
private static final long serialVersionUID = -3551511290189783173L;
/////////////////////////////////////////////////////////////////
// ------------------------------------------------- Constructors
/////////////////////////////////////////////////////////////////
/**
* <p>
* Empty constructor
* </p>
*/
public ExpLayer()
{
super();
}
/////////////////////////////////////////////////////////////////
// -------------------------------- Implementing Abstract Methods
/////////////////////////////////////////////////////////////////
/**
* <p>
* New neuron for the layer
* </p>
* @return LinkedNeuron New neuron for the layer
*/
public LinkedNeuron obtainNewNeuron() {
return new ExpNeuron();
}
}