/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet; /** * <p> * @author Written by Pedro Antonio Gutierrez Penya, Aaron Ruiz Mora (University of Cordoba) 17/07/2007 * @version 0.1 * @since JDK1.5 * </p> */ public class ExpLayer extends LinkedLayer { /** * <p> * Represents a neural net layer with all the neurons of ExpNeuron type * </p> */ ///////////////////////////////////////////////////////////////// // --------------------------------------- Serialization constant ///////////////////////////////////////////////////////////////// /** Generated by Eclipse */ private static final long serialVersionUID = -3551511290189783173L; ///////////////////////////////////////////////////////////////// // ------------------------------------------------- Constructors ///////////////////////////////////////////////////////////////// /** * <p> * Empty constructor * </p> */ public ExpLayer() { super(); } ///////////////////////////////////////////////////////////////// // -------------------------------- Implementing Abstract Methods ///////////////////////////////////////////////////////////////// /** * <p> * New neuron for the layer * </p> * @return LinkedNeuron New neuron for the layer */ public LinkedNeuron obtainNewNeuron() { return new ExpNeuron(); } }