/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // HMNEI.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 7-7-2008. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Preprocess.Instance_Selection.HMNEI; import keel.Algorithms.Preprocess.Basic.*; import org.core.*; import java.util.StringTokenizer; public class HMNEI extends Metodo { /*Own parameters of the algorithm*/ private double epsilon; public HMNEI (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int i, j, k, l, m; int nClases; int claseObt; boolean marcas[]; int nSel = 0; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; double conjS2[][]; double conjR2[][]; int conjN2[][]; boolean conjM2[][]; int clasesS2[]; double dist, minDist; double acierto, aciertoAct = 0.0; int hit[], miss[]; int pos, cont; double w[]; int cc[]; int seleccionadosAnt; long tiempo = System.currentTimeMillis(); /*Getting the number of differents classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; /*Building of the S set from the flags*/ conjS2 = new double[datosTrain.length][datosTrain[0].length]; conjR2 = new double[datosTrain.length][datosTrain[0].length]; conjN2 = new int[datosTrain.length][datosTrain[0].length]; conjM2 = new boolean[datosTrain.length][datosTrain[0].length]; clasesS2 = new int[datosTrain.length]; for (m=0, l=0; m<datosTrain.length; m++) { for (j=0; j<datosTrain[0].length; j++) { conjS2[l][j] = datosTrain[m][j]; conjR2[l][j] = realTrain[m][j]; conjN2[l][j] = nominalTrain[m][j]; conjM2[l][j] = nulosTrain[m][j]; } clasesS2[l] = clasesTrain[m]; l++; } nSel = datosTrain.length; do { acierto = aciertoAct; seleccionadosAnt = nSel; /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<nSel; m++) { for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = conjS2[m][j]; conjR[l][j] = conjR2[m][j]; conjN[l][j] = conjN2[m][j]; conjM[l][j] = conjM2[m][j]; } clasesS[l] = clasesS2[m]; l++; } /*Inicialization of the flagged instances vector from the S*/ marcas = new boolean[nSel]; for (i=0; i<nSel; i++) { marcas[i] = true; } hit = new int[nSel]; miss = new int[nSel]; for (i=0; i<conjS.length; i++) { for (j=0; j<nClases; j++) { minDist = Double.POSITIVE_INFINITY; pos = -1; for (k=0; k<conjS.length; k++) { if (i!=k && clasesS[k] == j) { dist = KNN.distancia(conjS[i], conjR[i], conjN[i], conjM[i], conjS[k], conjR[k], conjN[k], conjM[k], distanceEu); if (dist < minDist) { minDist = dist; pos = k; } } } if (pos >= 0) { if (clasesS[i] == j) { hit[pos]++; } else { miss[pos]++; } } } } w = new double[nClases]; cc = new int[nClases]; for (i=0; i<w.length; i++) { cont = 0; for (j=0; j<clasesS.length; j++) { if (clasesS[j] == i) { cont++; } } cc[i] = cont; w[i] = (double)cont / (double)nSel; } /*RULE R1*/ for (i=0; i<hit.length; i++) { if ((w[clasesS[i]] * (double)miss[i] + epsilon) > ((1-w[clasesS[i]]) * (double)hit[i])) { marcas[i] = false; nSel--; } } /*RULE R2*/ for (i=0; i<nClases; i++) { cont = 0; for (j=0; j<hit.length && cont < 4; j++) { if (clasesS[j] == i && marcas[j]) { cont++; } } if (cont < 4) { for (j=0; j<hit.length; j++) { if (clasesS[j] == i && !marcas[j] && (hit[j]+miss[j]) > 0) { marcas[j] = true; nSel++; } } } } /*RULE R3*/ if (nClases > 3) { for (i=0; i<hit.length; i++) { if (!marcas[i] && (miss[i]+hit[i] > 0) && miss[i] < (nClases/2)) { marcas[i] = true; nSel++; } } } /*RULE R4*/ for (i=0; i<hit.length; i++) { if (!marcas[i] && hit[i] >= (cc[clasesS[i]] / 4)) { marcas[i] = true; nSel++; } } /*Building of the S set from the flags*/ conjS2 = new double[nSel][datosTrain[0].length]; conjR2 = new double[nSel][datosTrain[0].length]; conjN2 = new int[nSel][datosTrain[0].length]; conjM2 = new boolean[nSel][datosTrain[0].length]; clasesS2 = new int[nSel]; for (m=0, l=0; m<conjS.length; m++) { if (marcas[m]) { //the instance will be evaluated for (j=0; j<datosTrain[0].length; j++) { conjS2[l][j] = conjS[m][j]; conjR2[l][j] = conjR[m][j]; conjN2[l][j] = conjN[m][j]; conjM2[l][j] = conjM[m][j]; } clasesS2[l] = clasesS[m]; l++; } } aciertoAct = 0; for (i=0; i<datosTrain.length; i++) { claseObt = KNN.evaluacionKNN2(1, conjS2, conjR2, conjN2, conjM2, clasesS2, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], nClases, distanceEu); if (claseObt == clasesTrain[i]) { aciertoAct++; } } } while (aciertoAct >= acierto && nSel < seleccionadosAnt); System.out.println("HMNEI "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting epsilon value*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); epsilon = Double.parseDouble(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; } }