/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. Sánchez (luciano@uniovi.es)
J. Alcalá-Fdez (jalcala@decsai.ugr.es)
S. García (sglopez@ujaen.es)
A. Fernández (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.ImbalancedClassification.Ensembles;
import java.util.ArrayList;
import java.util.StringTokenizer;
/**
* <p>Title: RuleBase</p>
* <p>Description: A full rule set description
* <p>Company: KEEL </p>
* @author Alberto Fernandez (University of Jaen) 11/10/2012
* @version 1.1
* @since JDK1.6
*/
public class RuleBase {
ArrayList<Rule> ruleBase;
myDataset train;
public RuleBase() {
ruleBase = new ArrayList<Rule> ();
}
/**
* To obtain the rule Base from the rule file (extracted from the C4.5 decision tree)
* @param Rules String full rule set in "text mode"
* @param train myDataset training set
*/
public RuleBase(myDataset train, String Rules) {
ruleBase = new ArrayList<Rule> ();
this.train = train;
StringTokenizer tokens = new StringTokenizer(Rules, "\n");
while (tokens.hasMoreTokens()) {
String Rule = tokens.nextToken();
Rule r = new Rule(train, Rule);
ruleBase.add(r);
}
}
public String printString() {
String cadena = new String("");
cadena += "Number of Rules: " + ruleBase.size() + "\n";
for (int i = 0; i < ruleBase.size(); i++) {
cadena += "Rule[" + (i + 1) + "]: " + ruleBase.get(i).printString();
}
return cadena;
}
public String printStringF() {
String cadena = new String("");
cadena += "Number of Rules: " + ruleBase.size() + "\n";
for (int i = 0; i < ruleBase.size(); i++) {
cadena += "Rule[" + (i + 1) + "]: " + ruleBase.get(i).printStringF();
}
return cadena;
}
public int size() {
return ruleBase.size();
}
/**
* It detects those Rule tha cover an small-disjunt
*/
public void coverExamples() {
for (int i = 0; i < this.size(); i++) {
ruleBase.get(i).coverExamples();
}
}
/**
* It computes how many examples are covered, and the weights of these examples
* @param weights the weights of these examples
*/
public void coverExamples(double weights[]) {
for (int i = 0; i < this.size(); i++) {
ruleBase.get(i).coverExamples(weights);
}
train = null;
}
}