/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
//
// Reconsistent.java
//
// Salvador Garc�a L�pez
//
// Created by Salvador Garc�a L�pez 7-5-2008.
// Copyright (c) 2004 __MyCompanyName__. All rights reserved.
//
package keel.Algorithms.Instance_Selection.Reconsistent;
import keel.Algorithms.Preprocess.Basic.*;
import java.util.StringTokenizer;
import java.util.Vector;
import java.util.Arrays;
import org.core.*;
public class Reconsistent extends Metodo {
public Reconsistent (String ficheroScript) {
super (ficheroScript);
}
public void ejecutar () {
int i, j, l;
boolean marcas[];
boolean marcas2[];
boolean marcastmp[];
boolean incorrect[];
int nSel;
double conjS[][];
double conjR[][];
int conjN[][];
boolean conjM[][];
int clasesS[];
Vector <Integer> vecinos[];
int next;
int maxneigh;
int pos;
int borrado;
int claseObt;
int nClases;
long tiempo = System.currentTimeMillis();
/*Getting the number of differents classes*/
nClases = 0;
for (i=0; i<clasesTrain.length; i++)
if (clasesTrain[i] > nClases)
nClases = clasesTrain[i];
nClases++;
/*Inicialization of the flagged instances vector for a posterior copy*/
marcas = new boolean[datosTrain.length];
marcas2 = new boolean[datosTrain.length];
incorrect = new boolean[datosTrain.length];
marcastmp = new boolean[datosTrain.length];
Arrays.fill(marcas, true);
Arrays.fill(marcas2, true);
Arrays.fill(incorrect, false);
Arrays.fill(marcastmp, true);
vecinos = new Vector [datosTrain.length];
for (i=0; i<datosTrain.length; i++)
vecinos[i] = new Vector <Integer>();
for (i=0; i<datosTrain.length; i++) {
next = nextNeighbour (marcas,datosTrain,i,vecinos[i]);
for (j=0; j<datosTrain.length; j++)
marcastmp[j] = marcas[j];
while (next >= 0 && clasesTrain[next] == clasesTrain[i]) {
vecinos[i].add(new Integer(next));
marcastmp[next] = false;
next = nextNeighbour(marcastmp,datosTrain,i,vecinos[i]);
}
}
maxneigh = vecinos[0].size();
pos = 0;
for (i=1; i<datosTrain.length; i++) {
if (vecinos[i].size() > maxneigh) {
maxneigh = vecinos[i].size();
pos = i;
}
}
while (maxneigh > 0) {
for (i=0; i<vecinos[pos].size(); i++) {
borrado = vecinos[pos].elementAt(i).intValue();
marcas[borrado] = false;
for (j=0; j<datosTrain.length; j++) {
vecinos[j].removeElement(new Integer(borrado));
}
vecinos[borrado].clear();
}
vecinos[pos].clear();
maxneigh = vecinos[0].size();
pos = 0;
for (i=1; i<datosTrain.length; i++) {
if (vecinos[i].size() > maxneigh) {
maxneigh = vecinos[i].size();
pos = i;
}
}
}
/*Building of the S set from the flags*/
nSel = 0;
for (i=0; i<datosTrain.length; i++)
if (marcas[i]) nSel++;
conjS = new double[nSel][datosTrain[0].length];
conjR = new double[nSel][datosTrain[0].length];
conjN = new int[nSel][datosTrain[0].length];
conjM = new boolean[nSel][datosTrain[0].length];
clasesS = new int[nSel];
for (i=0, l=0; i<datosTrain.length; i++) {
if (marcas[i]) { //the instance will be copied to the solution
for (j=0; j<datosTrain[0].length; j++) {
conjS[l][j] = datosTrain[i][j];
conjR[l][j] = realTrain[i][j];
conjN[l][j] = nominalTrain[i][j];
conjM[l][j] = nulosTrain[i][j];
}
clasesS[l] = clasesTrain[i];
l++;
}
}
for (i=0; i<datosTrain.length; i++) {
/*Apply 1-NN to the instance*/
claseObt = KNN.evaluacionKNN2 (1, conjS, conjR, conjN, conjM, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], nClases, true);
if (claseObt != clasesTrain[i]) {
incorrect[i] = true;
}
}
for (i=0; i<datosTrain.length; i++)
vecinos[i] = new Vector <Integer>();
for (i=0; i<datosTrain.length; i++) {
if (incorrect[i]) {
next = nextNeighbour (marcas2,datosTrain,i,vecinos[i]);
for (j=0; j<datosTrain.length; j++)
marcastmp[j] = marcas2[j];
while (next >= 0 && clasesTrain[next] == clasesTrain[i]) {
vecinos[i].add(new Integer(next));
marcastmp[next] = false;
next = nextNeighbour(marcastmp,datosTrain,i,vecinos[i]);
}
}
}
maxneigh = vecinos[0].size();
pos = 0;
for (i=1; i<datosTrain.length; i++) {
if (vecinos[i].size() > maxneigh) {
maxneigh = vecinos[i].size();
pos = i;
}
}
while (maxneigh > 0) {
for (i=0; i<vecinos[pos].size(); i++) {
borrado = vecinos[pos].elementAt(i).intValue();
marcas2[borrado] = false;
for (j=0; j<datosTrain.length; j++) {
vecinos[j].removeElement(new Integer(borrado));
}
vecinos[borrado].clear();
}
vecinos[pos].clear();
maxneigh = vecinos[0].size();
pos = 0;
for (i=1; i<datosTrain.length; i++) {
if (vecinos[i].size() > maxneigh) {
maxneigh = vecinos[i].size();
pos = i;
}
}
}
for (i=0; i<marcas.length; i++)
marcas[i] |= (marcas2[i] & incorrect[i]);
/*Building of the S set from the flags*/
nSel = 0;
for (i=0; i<datosTrain.length; i++)
if (marcas[i]) nSel++;
conjS = new double[nSel][datosTrain[0].length];
conjR = new double[nSel][datosTrain[0].length];
conjN = new int[nSel][datosTrain[0].length];
conjM = new boolean[nSel][datosTrain[0].length];
clasesS = new int[nSel];
for (i=0, l=0; i<datosTrain.length; i++) {
if (marcas[i]) { //the instance will be copied to the solution
for (j=0; j<datosTrain[0].length; j++) {
conjS[l][j] = datosTrain[i][j];
conjR[l][j] = realTrain[i][j];
conjN[l][j] = nominalTrain[i][j];
conjM[l][j] = nulosTrain[i][j];
}
clasesS[l] = clasesTrain[i];
l++;
}
}
System.out.println("Reconsistent "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s");
// COn conjS me vale.
int trainRealClass[][];
int trainPrediction[][];
trainRealClass = new int[datosTrain.length][1];
trainPrediction = new int[datosTrain.length][1];
//Working on training
for ( i=0; i<datosTrain.length; i++) {
trainRealClass[i][0] = clasesTrain[i];
trainPrediction[i][0] = KNN.evaluate(datosTrain[i],conjS, nClases, clasesS, 1);
}
KNN.writeOutput(ficheroSalida[0], trainRealClass, trainPrediction, entradas, salida, relation);
//Working on test
int realClass[][] = new int[datosTest.length][1];
int prediction[][] = new int[datosTest.length][1];
//Check time
for (i=0; i<realClass.length; i++) {
realClass[i][0] = clasesTest[i];
prediction[i][0]= KNN.evaluate(datosTest[i],conjS, nClases, clasesS, 1);
}
KNN.writeOutput(ficheroSalida[1], realClass, prediction, entradas, salida, relation);
}
int nextNeighbour (boolean marcas[], double datos[][], int ej, Vector <Integer> vecinos) {
int i, j, k;
int pos = -1;
double distmin = Double.POSITIVE_INFINITY;
double distancia;
double centroid[];
double prototipo[];
/*Computation of the previous centroid*/
centroid = new double[datos[0].length];
prototipo = new double[datos[0].length];
for (j=0; j<datos[0].length; j++) {
centroid[j] = 0;
for (k=0; k<vecinos.size(); k++) {
centroid[j] += datos[vecinos.elementAt(k).intValue()][j];
}
}
for (i=0; i<datos.length; i++) {
if (marcas[i] && i != ej) {
for (j=0; j<datos[0].length; j++) {
prototipo[j] = centroid[j] + datos[i][j];
prototipo[j] /= (vecinos.size()+1);
}
distancia = KNN.distancia (datos[ej], prototipo);
if (distancia < distmin) {
distmin = distancia;
pos = i;
}
}
}
return pos;
}
public void leerConfiguracion (String ficheroScript) {
String fichero, linea, token;
StringTokenizer lineasFichero, tokens;
byte line[];
int i, j;
ficheroSalida = new String[2];
fichero = Fichero.leeFichero (ficheroScript);
lineasFichero = new StringTokenizer (fichero,"\n\r");
lineasFichero.nextToken();
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
token = tokens.nextToken();
/*Getting the names of the training and test files*/
line = token.getBytes();
for (i=0; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroTraining = new String (line,i,j-i);
for (i=j+1; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroValidation = new String (line,i,j-i);
for (i=j+1; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroTest = new String (line,i,j-i);
/*Getting the path and base name of the results files*/
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
token = tokens.nextToken();
/*Getting the names of output files*/
line = token.getBytes();
for (i=0; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroSalida[0] = new String (line,i,j-i);
for (i=j+1; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroSalida[1] = new String (line,i,j-i);
}
}