/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
/*
* Parameters.java
*
* This class contains all the parameters of the system
*/
package keel.Algorithms.Genetic_Rule_Learning.Globals;
import java.util.*;
import java.io.*;
public final class Parameters {
public static String algorithmName;
public static double confidenceThreshold;
public static double inconsistencyThreshold;
public static double alpha;
public static double beta;
public static double lambda;
public static int numIntervals;
public static boolean amevaR;
public static String numIntrvls;
public static int Neighborhood;
public static int WindowsSize;
public static String DistanceFunction;
public static int minIntervals;
public static String mapType;
public static int minSupport;
public static double mergedThreshold;
public static double scalingFactor;
public static boolean useDiscrete;
public static int frequencySize;
public static boolean setConfig;
public static int numClasses;
public static int numAttributes;
public static int numInstances;
public static int popSize;
public static int initialNumberOfRules;
public static double probCrossover;
public static double probMutationInd;
public static int tournamentSize;
public static int numIterations;
public static double percentageOfLearning;
public static boolean useMDL;
public static int iterationMDL;
public static double initialTheoryLengthRatio;
public static double weightRelaxFactor;
public static double theoryWeight;
public static double probOne;
public static String trainInputFile;
public static String train2InputFile;
public static String testInputFile;
public static String trainOutputFile;
public static String testOutputFile;
public static String logOutputFile;
public static int seed;
public static boolean doRuleDeletion=false;
public static int iterationRuleDeletion;
public static int ruleDeletionMinRules;
public static boolean doHierarchicalSelection=false;
public static int iterationHierarchicalSelection;
public static double hierarchicalSelectionThreshold;
public static int sizePenaltyMinRules;
public static int numStrata;
public static String discretizer1;
public static String discretizer2;
public static String discretizer3;
public static String discretizer4;
public static String discretizer5;
public static String discretizer6;
public static String discretizer7;
public static String discretizer8;
public static String discretizer9;
public static String discretizer10;
public static int maxIntervals;
public static double probSplit;
public static double probMerge;
public static double probReinitialize;
public static double probReinitializeBegin;
public static double probReinitializeEnd;
public static boolean adiKR=false;
public static int minimumValuesOfSameClassPerInterval;
public static String processType;
public static String defaultClass;
public static String initMethod;
public static double coefficient;
}