/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /* * Parameters.java * * This class contains all the parameters of the system */ package keel.Algorithms.Genetic_Rule_Learning.Globals; import java.util.*; import java.io.*; public final class Parameters { public static String algorithmName; public static double confidenceThreshold; public static double inconsistencyThreshold; public static double alpha; public static double beta; public static double lambda; public static int numIntervals; public static boolean amevaR; public static String numIntrvls; public static int Neighborhood; public static int WindowsSize; public static String DistanceFunction; public static int minIntervals; public static String mapType; public static int minSupport; public static double mergedThreshold; public static double scalingFactor; public static boolean useDiscrete; public static int frequencySize; public static boolean setConfig; public static int numClasses; public static int numAttributes; public static int numInstances; public static int popSize; public static int initialNumberOfRules; public static double probCrossover; public static double probMutationInd; public static int tournamentSize; public static int numIterations; public static double percentageOfLearning; public static boolean useMDL; public static int iterationMDL; public static double initialTheoryLengthRatio; public static double weightRelaxFactor; public static double theoryWeight; public static double probOne; public static String trainInputFile; public static String train2InputFile; public static String testInputFile; public static String trainOutputFile; public static String testOutputFile; public static String logOutputFile; public static int seed; public static boolean doRuleDeletion=false; public static int iterationRuleDeletion; public static int ruleDeletionMinRules; public static boolean doHierarchicalSelection=false; public static int iterationHierarchicalSelection; public static double hierarchicalSelectionThreshold; public static int sizePenaltyMinRules; public static int numStrata; public static String discretizer1; public static String discretizer2; public static String discretizer3; public static String discretizer4; public static String discretizer5; public static String discretizer6; public static String discretizer7; public static String discretizer8; public static String discretizer9; public static String discretizer10; public static int maxIntervals; public static double probSplit; public static double probMerge; public static double probReinitialize; public static double probReinitializeBegin; public static double probReinitializeEnd; public static boolean adiKR=false; public static int minimumValuesOfSameClassPerInterval; public static String processType; public static String defaultClass; public static String initMethod; public static double coefficient; }