/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Genetic_Rule_Learning.GIL; import org.core.*; import java.util.*; public class Condition { private boolean codigo[]; int attribute; public Condition () { } /**Creates an empty condition*/ public Condition (int attr, myDataset train) { attribute = attr; if (train.getTipo(attr) == myDataset.NOMINAL) codigo = new boolean[train.numberValues(attr)]; else codigo = new boolean[1 + (int)(train.getMax(attr) - train.getMin(attr))]; Arrays.fill(codigo, false); } /**Creates a random condition of an attribute*/ public Condition (int attr, myDataset train, boolean random) { int i; attribute = attr; if (train.getTipo(attr) == myDataset.NOMINAL) codigo = new boolean[train.numberValues(attr)]; else codigo = new boolean[1 + (int)(train.getMax(attr) - train.getMin(attr))]; for (i=0; i<codigo.length; i++) { codigo[i] = (Randomize.Rand()<0.5?true:false); } arreglar(); } /**Creates a copy of a condition*/ public Condition (int attr, boolean c[]) { int i; attribute = attr; codigo = new boolean[c.length]; for (i=0; i<codigo.length; i++) { codigo[i] = c[i]; } arreglar(); } public boolean[] getCondition() { return codigo; } public boolean getiBit(int i) { return codigo[i]; } public int getSizeCondition() { return codigo.length; } public int getnValues() { int cont = 0; for (int i=0; i<codigo.length; i++) { if (codigo[i]) cont++; } return cont; } public boolean empty() { boolean vacio = true; for (int i=0; i<codigo.length; i++) { if (codigo[i]) vacio = false; } return vacio; } public void vaciar() { for (int i=0; i<codigo.length; i++) { codigo[i] = false; } } public void referenceChange() { int pos; pos = Randomize.Randint(0, codigo.length); codigo[pos] = !codigo[pos]; arreglar(); } public void referenceExtension(double condProb) { int i; for (i=0; i<codigo.length; i++) { if (codigo[i] == false) { if (Randomize.Rand() < condProb) codigo[i] = true; } } arreglar(); } public void referenceRestriction(double condProb) { int i; for (i=0; i<codigo.length; i++) { if (codigo[i] == true) { if (Randomize.Rand() < condProb) codigo[i] = false; } } arreglar(); } public String toString (myDataset train) { int i; String cadena = ""; boolean primer = true; cadena += train.nameAttribute(attribute) + " = ["; for (i=0; i<codigo.length; i++) { if (codigo[i]) { if (primer) { cadena += train.valueAttribute(attribute, i); primer = false; } else { cadena += ", " + train.valueAttribute(attribute, i); } } } cadena += "]"; return cadena; } private void arreglar() { int i; boolean p = true; for (i=0; i<codigo.length; i++){ if (!codigo[i]) p = false; } if (p == true) { for (i=0; i<codigo.length; i++) codigo[i] = false; } } }