/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Antonio Alejandro Tortosa (University of Granada) 01/07/2008 * @author Modified by Xavi Sol� (La Salle, Ram�n Llull University - Barcelona) 16/12/2008 * @version 1.1 * @since JDK1.2 * </p> */ package keel.Algorithms.Rule_Learning.C45RulesSA; class Extra { /** * <p> * Compute the additional errors if the error rate increases to the * upper limit of the confidence level. The coefficient is the * square of the number of standard deviations corresponding to the * selected confidence level. (Taken from Documenta Geigy Scientific * Tables (Sixth Edition), p185 (with modifications).) * * [Taken from "C4.5:Programs for Machine Learning", Ross Quinlan, * p278-279] * </p> * */ private static double Val[] = { 0, 0.001, 0.005, 0.01, 0.05, 0.10, 0.20, 0.40, 1.00}; private static double Dev[] = {4.0, 3.09, 2.58, 2.33, 1.65, 1.28, 0.84, 0.25, 0.00}; static double Coeff=0; public static double AddErrs(int N,int e,double CF){ double Val0, Pr; if ( Coeff == 0 ) { /* Compute and retain the coefficient value, interpolating from the values in Val and Dev */ int i; i = 0; while ( CF > Val[i] ) i++; Coeff = Dev[i-1] + (Dev[i] - Dev[i-1]) * (CF - Val[i-1]) /(Val[i] - Val[i-1]); Coeff = Coeff * Coeff; } if ( e < 1E-6 ) { return N * (1 - Math.exp((Math.log(CF)/Math.log(2)) / N)); } else if ( e < 0.9999 ) { Val0 = N * (1 - Math.exp((Math.log(CF)/Math.log(2)) / N)); return Val0 + e * (AddErrs(N, 1,CF) - Val0); } else if ( e + 0.5 >= N ) { return 0.67 * (N - e); } else { Pr = (e + 0.5 + Coeff/2 + Math.sqrt(Coeff * ((e + 0.5) * (1 - (e + 0.5)/N) + Coeff/4)) ) / (N + Coeff); return (N * Pr - e); } } }