/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Luciano Sanchez (University of Oviedo) 01/01/2004 * @author Modified by Jose Otero (University of Oviedo) 01/12/2008 * @version 1.0 * @since JDK1.5 * </p> */ package keel.Algorithms.Statistical_Classifiers.ClassifierADLinear; import keel.Algorithms.Statistical_Classifiers.Shared.DiscrAnalysis.*; import keel.Algorithms.Shared.Parsing.*; import keel.Algorithms.Shared.Exceptions.*; import org.core.*; import java.io.*; public class ClassifierADLinear { /** * <p> * In this class, a classifier using Linear Discriminant Analysis is implemented * </p> */ static Randomize rand; /** * <p> * In this method, a classifier is estimated using Linear Discriminant Analysis * @param tty unused boolean parameter, kept for compatibility * @param pc {@link ProcessConfig} object to obtain the train and test datasets * and the method's parameters. * </p> */ private static void lda(boolean tty, ProcessConfig pc) { try { String line; ProcessDataset pd=new ProcessDataset(); line=(String)pc.parInputData.get(ProcessConfig.IndexTrain); if (pc.parNewFormat) pd.processClassifierDataset(line,true); else pd.oldClusteringProcess(line); int nData=pd.getNdata(); // Number of examples int nVariables=pd.getNvariables(); // Number of variables int nInputs=pd.getNinputs(); // Number of inputs double[][] X = pd.getX(); // Input data int[] C = pd.getC(); // Output data int [] Ct=new int[C.length]; int nClasses = pd.getNclasses(); // Number of classes pd.showDatasetStatistics(); double[] maxInput = pd.getImaximum(); // Maximum and minimum for input data double[] minInput = pd.getIminimum(); int[] nInputFolds=new int[nInputs]; // A vector is generated with classes 1 bit between n codified double Cbin[][] = new double[nData][nClasses]; for (int i=0;i<nData;i++) { Cbin[i][C[i]]=1; } for (int i=0;i<X.length;i++) Ct[i]=-1; AD adlin = new AD(X,Cbin); double faults=0; try { // Classifier is estimated boolean lineal=true; adlin.computeParameter(lineal); for (int i=0;i<X.length;i++) { double[] resp=adlin.distances(X[i]); int theClass=adlin.argmax(resp); if (theClass!=C[i]) faults++; Ct[i]=theClass; } faults/=nData; System.out.println("Train error="+faults); } catch (Exception e) { System.out.println(e.toString()); } pc.trainingResults(C,Ct); // Algorithm is evaluated over test set ProcessDataset pdt = new ProcessDataset(); int nTest,npInputs,npVariables; line=(String)pc.parInputData.get(ProcessConfig.IndexTest); if (pc.parNewFormat) pdt.processClassifierDataset(line,false); else pdt.oldClusteringProcess(line); nTest = pdt.getNdata(); npVariables = pdt.getNvariables(); npInputs = pdt.getNinputs(); pdt.showDatasetStatistics(); if (npInputs!=nInputs) throw new IOException("IOERR test file"); double[][] Xp=pdt.getX(); int [] Cp=pdt.getC(); int [] Co=new int[Cp.length]; // Accuracy system test try { faults=0; for (int i=0;i<Xp.length;i++) { double[] resp=adlin.distances(Xp[i]); int aClass=adlin.argmax(resp); if (aClass!=Cp[i]) faults++; Co[i]=aClass; } faults/=Xp.length; System.out.println("test error="+faults); } catch (Exception e) { System.out.println(e.toString()); } pc.results(Cp,Co); } catch(FileNotFoundException e) { System.err.println(e+" Train file not found"); } catch(IOException e) { System.err.println(e+" Read Error"); } } /** * <p> * This method runs {@link ClassifierADLinear} * @param args Vector of string with command line arguments * </p> */ public static void main(String args[]) { boolean tty=false; ProcessConfig pc=new ProcessConfig(); System.out.println("Reading configuration file: "+args[0]); if (pc.fileProcess(args[0])<0) return; int algo=pc.parAlgorithmType; rand=new Randomize(); rand.setSeed(pc.parSeed); ClassifierADLinear a=new ClassifierADLinear(); a.lda(tty,pc); } }