/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
/**
* <p>
* @author Written by Luciano Sanchez (University of Oviedo) 01/01/2004
* @author Modified by Jose Otero (University of Oviedo) 01/12/2008
* @version 1.0
* @since JDK1.5
* </p>
*/
package keel.Algorithms.Statistical_Classifiers.ClassifierADLinear;
import keel.Algorithms.Statistical_Classifiers.Shared.DiscrAnalysis.*;
import keel.Algorithms.Shared.Parsing.*;
import keel.Algorithms.Shared.Exceptions.*;
import org.core.*;
import java.io.*;
public class ClassifierADLinear {
/**
* <p>
* In this class, a classifier using Linear Discriminant Analysis is implemented
* </p>
*/
static Randomize rand;
/**
* <p>
* In this method, a classifier is estimated using Linear Discriminant Analysis
* @param tty unused boolean parameter, kept for compatibility
* @param pc {@link ProcessConfig} object to obtain the train and test datasets
* and the method's parameters.
* </p>
*/
private static void lda(boolean tty, ProcessConfig pc) {
try {
String line;
ProcessDataset pd=new ProcessDataset();
line=(String)pc.parInputData.get(ProcessConfig.IndexTrain);
if (pc.parNewFormat) pd.processClassifierDataset(line,true);
else pd.oldClusteringProcess(line);
int nData=pd.getNdata(); // Number of examples
int nVariables=pd.getNvariables(); // Number of variables
int nInputs=pd.getNinputs(); // Number of inputs
double[][] X = pd.getX(); // Input data
int[] C = pd.getC(); // Output data
int [] Ct=new int[C.length];
int nClasses = pd.getNclasses(); // Number of classes
pd.showDatasetStatistics();
double[] maxInput = pd.getImaximum(); // Maximum and minimum for input data
double[] minInput = pd.getIminimum();
int[] nInputFolds=new int[nInputs];
// A vector is generated with classes 1 bit between n codified
double Cbin[][] = new double[nData][nClasses];
for (int i=0;i<nData;i++) {
Cbin[i][C[i]]=1;
}
for (int i=0;i<X.length;i++) Ct[i]=-1;
AD adlin = new AD(X,Cbin);
double faults=0;
try {
// Classifier is estimated
boolean lineal=true;
adlin.computeParameter(lineal);
for (int i=0;i<X.length;i++) {
double[] resp=adlin.distances(X[i]);
int theClass=adlin.argmax(resp);
if (theClass!=C[i]) faults++;
Ct[i]=theClass;
}
faults/=nData;
System.out.println("Train error="+faults);
} catch (Exception e) {
System.out.println(e.toString());
}
pc.trainingResults(C,Ct);
// Algorithm is evaluated over test set
ProcessDataset pdt = new ProcessDataset();
int nTest,npInputs,npVariables;
line=(String)pc.parInputData.get(ProcessConfig.IndexTest);
if (pc.parNewFormat) pdt.processClassifierDataset(line,false);
else pdt.oldClusteringProcess(line);
nTest = pdt.getNdata();
npVariables = pdt.getNvariables();
npInputs = pdt.getNinputs();
pdt.showDatasetStatistics();
if (npInputs!=nInputs) throw new IOException("IOERR test file");
double[][] Xp=pdt.getX(); int [] Cp=pdt.getC(); int [] Co=new int[Cp.length];
// Accuracy system test
try {
faults=0;
for (int i=0;i<Xp.length;i++) {
double[] resp=adlin.distances(Xp[i]);
int aClass=adlin.argmax(resp);
if (aClass!=Cp[i]) faults++;
Co[i]=aClass;
}
faults/=Xp.length;
System.out.println("test error="+faults);
} catch (Exception e) {
System.out.println(e.toString());
}
pc.results(Cp,Co);
} catch(FileNotFoundException e) {
System.err.println(e+" Train file not found");
} catch(IOException e) {
System.err.println(e+" Read Error");
}
}
/**
* <p>
* This method runs {@link ClassifierADLinear}
* @param args Vector of string with command line arguments
* </p>
*/
public static void main(String args[]) {
boolean tty=false;
ProcessConfig pc=new ProcessConfig();
System.out.println("Reading configuration file: "+args[0]);
if (pc.fileProcess(args[0])<0) return;
int algo=pc.parAlgorithmType;
rand=new Randomize();
rand.setSeed(pc.parSeed);
ClassifierADLinear a=new ClassifierADLinear();
a.lda(tty,pc);
}
}