/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.Genetic_Rule_Learning.BioHEL;
public class populationWrapper {
geneticAlgorithm ga;
classifierFactory cf;
int popSize;
public populationWrapper(int pPopSize){
cf = new classifierFactory();
ga = new geneticAlgorithm(cf);
popSize = pPopSize;
}
public void activateModifiedFlag(){
int i;
rank[] rk=ga.getPopulationRank();
for(i=0;i<popSize;i++) rk[i].ind.activateModified();
ga.resetBest();
}
rank[] getPopulationRank()
{
int i;
return ga.getPopulationRank();
}
public void gaIteration(){
ga.doIterations(1);
}
public void releasePopulation(){
}
public classifier getBestOverall(){
return (classifier)ga.getBest();
}
classifier[] getPopulation(){
return (classifier[])ga.getPopulation();
}
public classifier getBestPopulation(){
rank[] rk=ga.getPopulationRank();
return (classifier)rk[0].ind;
}
public classifier getWorstPopulation(){
rank[] rk=ga.getPopulationRank();
return (classifier)rk[popSize - 1].ind;
}
public double getAverageLength()
{
int i;
double ave=0;
rank[] rk=ga.getPopulationRank();
for(i=0;i<popSize;i++) ave+=rk[i].ind.getLength();
return ave/(double)popSize;
}
public Object[] getAverageAccuracies(){
int i;
Double ave1 = new Double(0);
Double ave2 = new Double(0);
rank[] rk = ga.getPopulationRank();
for(i=0;i<popSize;i++) {
ave1 += ((classifier)rk[i].ind).getAccuracy();
ave2 += ((classifier)rk[i].ind).getAccuracy2();
}
ave1/=(double)popSize;
ave2/=(double)popSize;
Object[] res = new Object[2];
res[0] = ave1;
res[1] = ave2;
return res;
}
public double getMaxAccuracy(){
int i;
rank[] rk=ga.getPopulationRank();
double max=((classifier)rk[0].ind).getAccuracy();
for(i=1;i<popSize;i++) {
double percen=((classifier)rk[i].ind).getAccuracy();
if(percen>max) max=percen;
}
return max;
}
public classifier cloneClassifier(classifier orig){
return cf.cloneClassifier(orig);
}
public classifier createClassifier(){
return cf.createClassifier();
}
public void destroyClassifier(classifier orig){
}
}