/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Genetic_Rule_Learning.BioHEL; public class agentPerformanceTraining { int ruleClass; int numInstancesPos; int numInstancesPosOK; int numInstancesTotal; int numInstancesMatched; public void addMatch(int realClass,int predictedClass) { if(realClass==ruleClass) numInstancesPos++; numInstancesMatched++; if (predictedClass == realClass) { numInstancesPosOK++; } } public void addNoMatch(int realClass) { if(realClass==ruleClass) numInstancesPos++; } public double getAccuracy() { return (double)numInstancesPosOK/(double)numInstancesTotal; } public double getAccuracy2() { if(numInstancesMatched==0) return 0; return (double)numInstancesPosOK/(double)numInstancesMatched; } public double getCoverage() { return (double)numInstancesMatched/(double)numInstancesTotal;} public int getNumOK() { return numInstancesPosOK;} public int getNumPos() { return numInstancesPos;} public int getNumKO() { return numInstancesMatched-numInstancesPosOK;} public int getNumTotal() { return numInstancesTotal;} public double getNC(){return (double)(1-numInstancesMatched)/(double)numInstancesTotal;} public double getRecall(){ return (double)numInstancesPosOK/(double)numInstancesPos; } public double getFMeasure() { double precision=getAccuracy2(); double recall=getRecall(); return 2*precision*recall/(precision+recall); } public agentPerformanceTraining(int pNumInstances,int pRuleClass){ ruleClass=pRuleClass; numInstancesTotal = pNumInstances; numInstancesPosOK = 0; numInstancesMatched = 0; numInstancesPos = 0; } public double getFitness(classifier ind){ double fitness; if(Parameters.useMDL) { ind.computeTheoryLength(); fitness = Parameters.timers.tMDL.mdlFitness(ind,this); } else { fitness=getFMeasure(); fitness*=fitness; } return fitness; } }