/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Albert Orriols (La Salle, Ram�n Llull University - Barcelona) 28/03/2004 * @author Modified by Xavi Sol� (La Salle, Ram�n Llull University - Barcelona) 03/12/2008 * @version 1.1 * @since JDK1.2 * </p> */ package keel.Algorithms.Genetic_Rule_Learning.XCS; import keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config; import java.lang.*; import java.io.*; import java.util.*; public class RMPEnvironment extends SSEnvironment { /** * <p> * RMPEnvironment. It's the environment for Real Multiplexer Environment * </p> */ /////////////////////////////////////// // attributes /** * <p> * Represents the number of actions that can take the condition. * </p> * */ private int numActions; /** * <p> * Represents the length of the condition. * </p> * */ private int condLength; /** * <p> * Indicates if the classification has been correct. * </p> * */ private boolean isCorrect; /** * <p> * Represents the maximum payoff that a classifier can get. * </p> * */ private double maxPayOff; /** * <p> * Represents the minimum payoff that a classifier can get. * </p> * */ private double minPayOff; /** * <p> * Represents the current state of the environment. * </p> * */ private double[] currentState; /** * <p> * The number of bits that indicate the position. * </p> * */ private int positionBits; /** * <p> * It indicates if the classification has been performed. In mux problem it's true * in every step. * */ private boolean classExecuted; /////////////////////////////////////// // operations /** * <p> * It's the constructor of the class. It initializes the environment. * </p> * <p> */ public RMPEnvironment() { //super(); condLength = Config.clLength; numActions = 2; double i = 0; for(i=1.0; (int) i+Math.pow(2.,i)<=condLength; i++);//calculates the position bits in this problem positionBits=(int)(i-1); classExecuted = false; isCorrect = false; currentState = new double[condLength]; maxPayOff = 1000; minPayOff = 0; System.out.println ("The bits number of the position is: "+positionBits); } // end MPEnvironment /** * <p> * Determines if the classification was good * </p> * <p> * * @return a boolean that indicates if the last classification was good. * </p> */ public boolean wasCorrect() { return isCorrect; } // end wasCorrect /** * <p> * This function returns the reward given when applying the action to the * environment. * </p> * <p> * * @return a double with the reward * </p> * <p> * @param action is the action chosen to do. * </p> */ public double makeAction(int action) { int position = 0; double value; for (int i=0; i<positionBits; i++){ if (currentState[positionBits-i-1] >= 0.5) position += (int)Math.pow(2.0, positionBits -1 -i); } int act = 0; if (currentState[position] >= 0.5) act = 1; if ( act == action){ isCorrect = true; classExecuted = true; return maxPayOff; } isCorrect = false; classExecuted = true; return minPayOff; } // end makeAction /** * <p> * The function returns the current state. * </p> * <p> * * @return a float[] with the current state. * </p> */ public double[] getCurrentState() { return currentState; } // end getCurrentSate /** * <p> * Creates a new state of the problem. XCS has to decide the * action to do. * </p> * <p> * * @return a float[] with the new situation. * </p> */ public double[] newState() { for (int i=0; i<condLength; i++){ currentState[i] = Config.rand();; } classExecuted = false; return currentState; } // end newState /** * <p> * Returns the class of the environmental state. It is * used by UCS (supervised learning). * </p> * <p> * @return an integer with the class associated with the current environmental * state. * </p> */ public int getEnvironmentClass(){ int position = 0; double value; for (int i=0; i<positionBits; i++){ if (currentState[positionBits-i-1] >= 0.5) position += (int)Math.pow(2.0, positionBits -1 -i); } int act = 0; if (currentState[position] >= 0.5) act = 1; return act; } //end getClass } // end RMPEnvironment