/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Fuzzy_Rule_Learning.Random_Sets.FSS98; import keel.Algorithms.Shared.Parsing.*; import org.core.*; import java.io.*; /** * <p> * ModelFuzzySAP is intended to generate a Fuzzy Rule Based System (FRBS) * regression model using the fuzzy random sets regression algorithm. * * This class makes used of the following classes: * {@link RSFSS}: the model to be learned * * Detailed in: * * L. S�nchez. A Random Sets-Based Method for Identifying Fuzzy Models. Fuzzy Sets * and Systems 98:3 (1998) 343-354. * </p> * * <p> * @author Written by Luciano Sanchez (University of Oviedo) 08/03/2004 * @version 1.0 * @since JDK1.4 * </p> */ public class FSS98 { //The Randomize object used in this class static Randomize rand; /** * <p> * This private static method extracts the dataset and the method's parameters * from the KEEL environment, carries out with the partitioning of the * input and output spaces, learn the FRBS model --which is a * {@link RSFSS} instance-- using the random sets regression algorithm and print * out the results with the validation dataset. * * * </p> * @param tty unused boolean parameter, kept for compatibility * @param pc {@link ProcessConfig} object to obtain the train and test datasets * and the method's parameters. */ public static void fuzzyFSSmodeling(boolean tty,ProcessConfig pc) { try { String readALine = new String(); ProcessDataset pd=new ProcessDataset(); readALine=(String)pc.parInputData.get(ProcessConfig.IndexTrain); if (pc.parNewFormat) pd.processModelDataset(readALine,true); else pd.oldClassificationProcess(readALine); int nData=pd.getNdata(); // Number of examples int nVariables=pd.getNvariables(); // Number of variables int nInputs=pd.getNinputs(); // Number of inputs int nsalidas=1; double[][] X = pd.getX(); // Input data double[] Y = pd.getY(); // Output data double[] Yt = new double[Y.length]; pd.showDatasetStatistics(); double[] inputMaximum = pd.getImaximum(); // Maximum and Minimum for input data double[] inputMinimum = pd.getIminimum(); double outputMaximum = pd.getOmaximum(); // Maximum and Minimum for output data double outputMinimum = pd.getOminimum(); int nc=pc.parRuleNumber; // Conjuged gradient optimization RSFSS rs=new RSFSS(X,Y); rs.RSFSSX2(nc,rand,pc.parSigma); double error=0; for (int i=0;i<nData;i++) { double theEvaluation[]=rs.getOutput(X[i]); error+=(theEvaluation[0]-Y[i])*(theEvaluation[0]-Y[i]); Yt[i]=theEvaluation[0]; } error/=nData; pc.trainingResults(Y,Yt); System.out.println("MSE Train = "+error); // Test error ProcessDataset pdt = new ProcessDataset(); int nTest,nTestInputs,nTestVariables; readALine=(String)pc.parInputData.get(ProcessConfig.IndexTest); if (pc.parNewFormat) pdt.processModelDataset(readALine,false); else pdt.oldClassificationProcess(readALine); nTest = pdt.getNdata(); nTestVariables = pdt.getNvariables(); nTestInputs = pdt.getNinputs(); pdt.showDatasetStatistics(); if (nTestInputs!=nInputs) throw new IOException("IOERR Test file"); double[][] Xp=pdt.getX(); double [] Yp=pdt.getY(); double []Yo=new double[Yp.length]; double RMS=0; for (int i=0;i<nTest;i++) { double theEvaluation[]=rs.getOutput(Xp[i]); RMS+=(theEvaluation[0]-Yp[i])*(theEvaluation[0]-Yp[i]); Yo[i]=theEvaluation[0]; } RMS/=nTest; System.out.println("MSE Test = "+RMS); pc.results(Yp,Yo); } catch(FileNotFoundException e) { System.err.println(e+" File not found"); } catch(IOException e) { System.err.println(e+" Read Error"); } } /** * <p> * This public static method runs the algorithm that this class concerns with. * </p> * @param args Array of strings to sent parameters to the main program. The * path of the algorithm's parameters file must be given. */ public static void main(String args[]) { boolean tty=false; ProcessConfig pc=new ProcessConfig(); System.out.println("Reading configuration file: "+args[0]); if (pc.fileProcess(args[0])<0) return; int algo=pc.parAlgorithmType; rand=new Randomize(); rand.setSeed(pc.parSeed); FSS98 wm=new FSS98(); wm.fuzzyFSSmodeling(tty,pc); } }