/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // BSE.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 28-11-2005. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Preprocess.Instance_Selection.BSE; import keel.Algorithms.Preprocess.Basic.*; import org.core.*; import java.util.StringTokenizer; public class BSE extends Metodo { /*Own parameters of the algorithm*/ private int k; public BSE (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int i, j, l, m; int nClases; int claseObt; boolean marcas[]; int nSel = 0; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; int bestEval = 0; int eval; boolean parar = false; int peor; long tiempo = System.currentTimeMillis(); /*Inicialization of the flagged instances vector for a posterior copy*/ marcas = new boolean[datosTrain.length]; for (i=0; i<datosTrain.length; i++) marcas[i] = true; nSel = datosTrain.length; /*Getting the number of differents classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; for (i=0; i<datosTrain.length; i++) { claseObt = KNN.evaluacionKNN2(k, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], nClases, distanceEu); if (claseObt == clasesTrain[i]) { bestEval++; } } /*Body of the algorithm. BSE removes the object with the smallest contribution for the subset quality.*/ while (!parar) { peor = -1; for (i=0; i<datosTrain.length; i++) { if (marcas[i]) { marcas[i] = false; nSel--; eval = 0; /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (j=0, l=0; j<datosTrain.length; j++) { if (marcas[j]) { //the instance will be copied to the solution for (m=0; m<datosTrain[0].length; m++) { conjS[l][m] = datosTrain[j][m]; conjR[l][m] = realTrain[j][m]; conjN[l][m] = nominalTrain[j][m]; conjM[l][m] = nulosTrain[j][m]; } clasesS[l] = clasesTrain[j]; l++; } } for (j=0; j<datosTrain.length; j++) { claseObt = KNN.evaluacionKNN2(k, conjS, conjR, conjN, conjM, clasesS, datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], nClases, distanceEu); if (claseObt == clasesTrain[j]) { eval++; } } if (eval >= bestEval) { peor = i; bestEval = eval; } marcas[i] = true; nSel++; } } if (peor >= 0) { marcas[peor] = false; nSel--; } else { parar = true; } } /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (i=0, l=0; i<datosTrain.length; i++) { if (marcas[i]) { //the instance will be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[i][j]; conjR[l][j] = realTrain[i][j]; conjN[l][j] = nominalTrain[i][j]; conjM[l][j] = nulosTrain[i][j]; } clasesS[l] = clasesTrain[i]; l++; } } System.out.println("BSE "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the number of neighbors*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); k = Integer.parseInt(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; } }