/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Luciano S�nchez (University of Oviedo) 21/01/2004 * @author Modified by M.R. Su�rez (University of Oviedo) 18/12/2008 * @author Modified by Enrique A. de la Cal (University of Oviedo) 21/12/2008 * @version 1.0 * @since JDK1.5 * </p> */ package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.*; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.*; import keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.*; // Wrappers used with genetic algorithms public class FuzzyGPModel extends Model { /** * Class for management fuzzy models in GP */ NodeRuleBase R; static FuzzyPartition C; int defuzType; /** * <p> * Constructor. Inicialize a new fuzzy model for GP * </p> * @param pR Base rule * @param c Fuzzy partition * @param td Type of defuzzifier */ public FuzzyGPModel( NodeRuleBase pR, FuzzyPartition c, int td) { R=(NodeRuleBase)pR.clone(); C=c.clone(); defuzType=td; } /** * <p> * Constructor. Initialize a new fuzzy model fro GP from another one * </p> * @param mb The fuzzy model for GP */ public FuzzyGPModel(FuzzyGPModel mb) { R=(NodeRuleBase)mb.R.clone(); C=mb.C.clone(); defuzType=mb.defuzType; } /** * <p> * This method assign a fuzzy model for GP to anothe one * </p> * @param mb The fuzzy model for GP */ public void set(FuzzyGPModel mb) { R=(NodeRuleBase)mb.R.clone(); C=mb.C.clone(); defuzType=mb.defuzType; } /** * <p> * This method clone a fuzzy model for GP * </p> */ public Model clone() { return new FuzzyGPModel(this); } /** * <p> * This method is for debug * </p> */ public void debug() { R.debug(); } /** * <p> * This method return the output of the model defuzzified * </p> * @param x The output */ public double output(double [] x) { FuzzyAlphaCut xfuzzy[] = new FuzzyAlphaCut[x.length]; for (int i=0;i<x.length;i++) xfuzzy[i]=new FuzzyAlphaCut(new FuzzyNumberTRIANG(x[i],x[i],x[i])); R.replaceTerminals(xfuzzy); IntDouble[] result=R.CrispEval(); if (defuzType==RuleBase.DEFUZCDM) { double addcenter=0, addweight=0; for (int i=0;i<result.length;i++) { addcenter+=C.getComponent(result[i].consequent).massCentre()*result[i].weight; addweight+=result[i].weight; } if (addweight==0) return 0; // The output is not covered. This mustn't ocurr. return addcenter/addweight; } if (defuzType==RuleBase.DEFUZMAX) { double center=0, maxweight=0; for (int i=0;i<result.length;i++) { if (result[i].weight>=maxweight) { maxweight=result[i].weight; center=C.getComponent(result[i].consequent).massCentre(); } } if (maxweight==0) return 0; // The output is not covered. This musn't ocurr. return center; } return 0; } }