/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.MIL; import java.io.IOException; public class ExceptionDatasets{ /** * */ private static final long serialVersionUID = 1L; protected org.ayrna.jclec.util.dataset.KeelMultiInstanceDataSet m_data; protected Exception m_FailReason = null; /** * initializes the capability with the given flags * */ public ExceptionDatasets(String nameFile) throws IOException { m_data = new org.ayrna.jclec.util.dataset.KeelMultiInstanceDataSet(); m_data.setFileName(nameFile); m_data.open(); } public org.ayrna.jclec.util.dataset.KeelMultiInstanceDataSet getDataset(){ return m_data; } public void setDataset(org.ayrna.jclec.util.dataset.KeelMultiInstanceDataSet m_data){ this.m_data = m_data; } public boolean checkDataset(){ // Controlamos que el primer atributo sea string if (m_data.getMetadata().getAttribute(m_data.getMetadata().numberOfAttributes()-1).getType() != org.ayrna.jclec.util.dataset.AttributeType.Categorical) { m_FailReason = new Exception (createMessage("Incorrect Multi-Instance format, the first attribute must be categorical!")); return false; } if(m_data.getMetadata().numberOfAttributes() < 3){ m_FailReason = new Exception(createMessage("Incorrect Multi-Instance format, the number of attribut must be at least three!")); return false; } return true; } public void testDataset() throws Exception { if (!checkDataset()) throw m_FailReason; } protected String createMessage(String msg) { String result; result = ""; result += ": " + msg; return result; } }