/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
//
// RENN.java
//
// Salvador Garc�a L�pez
//
// Created by Salvador Garc�a L�pez 11-7-2004.
// Copyright (c) 2004 __MyCompanyName__. All rights reserved.
//
package keel.Algorithms.Instance_Selection.RENN;
import keel.Algorithms.Preprocess.Basic.*;
import keel.Dataset.*;
import org.core.*;
import java.util.StringTokenizer;
import java.util.Vector;
public class RENN extends Metodo {
/*Own parameters of the algorithm*/
private int k;
public RENN (String ficheroScript) {
super (ficheroScript);
}
public void ejecutar () {
int i, j, l;
int nClases;
int claseObt;
boolean marcas[];
int nSel = 0;
double conjS[][];
int clasesS[];
double conjS2[][];
int clasesS2[];
boolean fin = false;
long tiempo = System.currentTimeMillis();
/*Copy the original data to the S set*/
conjS = new double[datosTrain.length][datosTrain[0].length];
clasesS = new int[datosTrain.length];
for (i=0; i<datosTrain.length; i++) {
for (j=0; j<datosTrain[0].length; j++) {
conjS[i][j] = datosTrain[i][j];
}
clasesS[i] = clasesTrain[i];
}
/*Getting the number of differents classes*/
nClases = 0;
for (i=0; i<clasesTrain.length; i++)
if (clasesTrain[i] > nClases)
nClases = clasesTrain[i];
nClases++;
/*Body of the RENN algorithm. Introduce an external loop considering ENN.*/
while (!fin) {
/*Inicialization of the flagged instances vector for a posterior copy*/
marcas = new boolean[conjS.length];
for (i=0; i<conjS.length; i++)
marcas[i] = false;
nSel = 0;
for (i=0; i<conjS.length; i++) {
/*Apply KNN to the instance*/
claseObt = KNN.evaluacionKNN2 (k, conjS, clasesS, conjS[i], nClases);
if (claseObt == clasesS[i]) { //conform with your mayority, it is included in the solution set
marcas[i] = true;
nSel++;
}
}
if (nSel == conjS.length) { //all the instances are conform in the set
fin = true;
} else {//any instance must be eliminated
/*Building of the S set from the flags*/
conjS2 = new double[nSel][datosTrain[0].length];
clasesS2 = new int[nSel];
for (i=0, l=0; i<conjS.length; i++) {
if (marcas[i]) { //the instance will be copied to the solution
for (j=0; j<datosTrain[0].length; j++) {
conjS2[l][j] = conjS[i][j];
}
clasesS2[l] = clasesS[i];
l++;
}
}
conjS = conjS2;
clasesS = clasesS2;
}
}
System.out.println("RENN "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s");
// COn conjS me vale.
int trainRealClass[][];
int trainPrediction[][];
trainRealClass = new int[datosTrain.length][1];
trainPrediction = new int[datosTrain.length][1];
//Working on training
for ( i=0; i<datosTrain.length; i++) {
trainRealClass[i][0] = clasesTrain[i];
trainPrediction[i][0] = KNN.evaluate(datosTrain[i],conjS, nClases, clasesS, this.k);
}
KNN.writeOutput(ficheroSalida[0], trainRealClass, trainPrediction, entradas, salida, relation);
//Working on test
int realClass[][] = new int[datosTest.length][1];
int prediction[][] = new int[datosTest.length][1];
//Check time
for (i=0; i<realClass.length; i++) {
realClass[i][0] = clasesTest[i];
prediction[i][0]= KNN.evaluate(datosTest[i],conjS, nClases, clasesS, this.k);
}
KNN.writeOutput(ficheroSalida[1], realClass, prediction, entradas, salida, relation);
}
public void leerConfiguracion (String ficheroScript) {
String fichero, linea, token;
StringTokenizer lineasFichero, tokens;
byte line[];
int i, j;
ficheroSalida = new String[2];
fichero = Fichero.leeFichero (ficheroScript);
lineasFichero = new StringTokenizer (fichero,"\n\r");
lineasFichero.nextToken();
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
token = tokens.nextToken();
/*Getting the names of the training and test files*/
line = token.getBytes();
for (i=0; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroTraining = new String (line,i,j-i);
for (i=j+1; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroValidation = new String (line,i,j-i);
for (i=j+1; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroTest = new String (line,i,j-i);
/*Getting the path and base name of the results files*/
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
token = tokens.nextToken();
/*Getting the names of output files*/
line = token.getBytes();
for (i=0; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroSalida[0] = new String (line,i,j-i);
for (i=j+1; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroSalida[1] = new String (line,i,j-i);
/*Getting the number of neighbors*/
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
k = Integer.parseInt(tokens.nextToken().substring(1));
}
}