/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.LQD.methods.FGFS_Minimum_Risk; import java.io.BufferedReader; import java.io.FileWriter; import java.io.IOException; import java.util.Vector; /** * * File: fuzzy.java * * Properties and functions of individual of the population * * @author Written by Ana Palacios Jimenez (University of Oviedo) 25/006/2010 * @version 1.0 */ public class IndMichigan { fuzzy[][] X; Vector<Vector<Float>> Y; fuzzyRule individuo; Interval fitness; IndMichigan(fuzzy[][] x,Vector<Vector<Float>> y,Vector<fuzzyPartition> pentradas,int classes, int COST, int alfa, Vector<Float> values_classes,Vector<Vector<fuzzy>> pesos,int instance, int asign_weight_rule, String label,Vector<Float> p, int es_crisp) throws IOException { individuo= new fuzzyRule(pentradas,classes,asign_weight_rule);//initialize the individual int contador=0; if(es_crisp==0) { //Obtain the antecedents of the rule and the consequent if(instance<(x.length)) individuo.obtain_rule(x,y,pentradas,classes,COST, alfa,values_classes,pesos,instance,label,p); else { while(instance>=x.length) { instance=instance-x.length; } individuo.obtain_rule_random_eje(x,y,pentradas,classes,COST, alfa,values_classes,pesos,label,p, instance); } } else { if(instance<(x.length)) individuo.obtain_rule(x,y,pentradas,classes,COST, alfa,values_classes,pesos,instance,label,p); else individuo.obtain_rule_random(x,y,pentradas,classes,COST, alfa,values_classes,pesos,label,p); } X=x; Y=y; } //Obtain the new individual (rule) from two parents IndMichigan(Vector<Integer> ant,fuzzy[][] x,Vector<Vector<Float>> y,Vector<fuzzyPartition> pentradas,int classes, int COST, int alfa, Vector<Float> value_classes,Vector<Vector<fuzzy>> pesos,int asign_weight_rule, String etiqueta,Vector<Float> p) throws IOException { individuo= new fuzzyRule(pentradas,classes, asign_weight_rule); Integer[]a= new Integer[ant.size()]; for(int i=0;i<ant.size();i++) { a[i]= ant.get(i); } individuo.setantecedent(a); individuo.calculateconsequent(x, y, pentradas, classes,COST,alfa,value_classes,pesos,etiqueta,p); X=x; Y=y; } public fuzzyRule getregla(){return individuo;} public int size() { return individuo.size(); } public Interval getfitness() { return fitness; } public fuzzy[][] getX() { return X; } public Vector<Vector<Float>> getY() { return Y; } public void asignaejemplos(fuzzy[][] x,Vector<Vector<Float>> y) { X=x; Y=y; } }