/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.Genetic_Rule_Learning.SIA;
/**
* <p>Title: Data-set</p>
* <p>Description: It contains the methods for reading the training and test files</p>
* @author Written by Alberto Fern�ndez (University of Granada) 11/25/2004
* @author Modified by Alberto Fern�ndez (University of Granada) 13/02/2004
* @version 1.2
* @since JDK1.4
*/
import java.io.*;
import keel.Dataset.*;
import java.util.Arrays;
public class Dataset {
private double[][] X = null;
private boolean[][] missing = null;
private int[] C = null;
private double[] emaximo;
private double[] eminimo;
private int ndatos; // Number of examples
private int nvariables; // Numer of variables
private int nentradas; // Number of inputs
private int nclases; // Number of classes
final static boolean debug = false;
private InstanceSet IS;
private int[] comunes;
/**
* It returns the values of the input attributes
* @return double[][] An array with the input attributes
*/
public double[][] getX() {
return X;
}
/**
* It returns the values for the output (class)
* @return int[] An array with the ouput values
*/
public int[] getC() {
int[] retorno = new int[C.length];
for (int i = 0; i < C.length; i++) {
retorno[i] = C[i];
}
return retorno;
}
/**
* It returns an array with the maximum values of the input attributes
* @return double[] an array with the maximum values of the input attributes
*/
public double[] getemaximo() {
return emaximo;
}
/**
* It returns an array with the minimum values of the input attributes
* @return double[] an array with the minimum values of the input attributes
*/
public double[] geteminimo() {
return eminimo;
}
/**
* It returns the number of examples
* @return int the number of examples
*/
public int getndatos() {
return ndatos;
}
/**
* It returns the number of variables
* @return int the number of variables (including input and output)
*/
public int getnvariables() {
return nvariables;
}
/**
* It returns the number of input variables
* @return int the number of input variables
*/
public int getnentradas() {
return nentradas;
}
/**
* It returns the total number of classes
* @return int the total number of classes
*/
public int getnClasses() {
return nclases;
}
/**
* Comprueba si un atributo est� "perdido" o no
* @param i int N�mero de ejemplo
* @param j int N�mero de atributo
* @return boolean True si falta, False en otro caso
*/
public boolean isMissing(int i, int j) {
// True is the value is missing (0 in the table)
return missing[i][j];
}
/**
* Builder. It creates a new instance set
*/
public Dataset() {
IS = new InstanceSet(); // Init a new set of instances
}
/**
* It reads the examples file (training or test)
* @param nfejemplos String Name of the exampes file
* @param train boolean True if it refers to the training set. False if it is test
* @throws IOException A possible I/O exception
*/
public void readSet(String nfejemplos, boolean train) throws
IOException {
try {
// Load in memory a dataset that contains a classification problem
IS.readSet(nfejemplos, train);
ndatos = IS.getNumInstances();
nentradas = Attributes.getInputNumAttributes();
nvariables = nentradas + Attributes.getOutputNumAttributes();
// Check that there is only one output variable
if (Attributes.getOutputNumAttributes() > 1) {
System.out.println(
"This algorithm can not process MIMO datasets");
System.out.println(
"All outputs but the first one will be removed");
System.exit(1);
}
boolean noOutputs = false;
if (Attributes.getOutputNumAttributes() < 1) {
System.out.println(
"This algorithm can not process datasets without outputs");
System.out.println("Zero-valued output generated");
noOutputs = true;
System.exit(1);
}
// Initialice and fill our own tables
X = new double[ndatos][nentradas];
missing = new boolean[ndatos][nentradas];
C = new int[ndatos];
// Maximum and minimum of inputs
emaximo = new double[nentradas];
eminimo = new double[nentradas];
// All values are casted into double/integer
nclases = 0;
for (int i = 0; i < ndatos; i++) {
keel.Dataset.Instance inst = IS.getInstance(i);
for (int j = 0; j < nentradas; j++) {
X[i][j] = IS.getInputNumericValue(i, j); //inst.getInputRealValues(j);
missing[i][j] = inst.getInputMissingValues(j);
if (X[i][j] > emaximo[j] || i == 0) {
emaximo[j] = X[i][j];
}
if (X[i][j] < eminimo[j] || i == 0) {
eminimo[j] = X[i][j];
}
}
if (noOutputs) {
C[i] = 0;
} else {
C[i] = (int) IS.getOutputNumericValue(i, 0); //(int)inst.getOutputRealValues(i);
}
if (C[i] > nclases) {
nclases = C[i];
}
}
nclases++;
System.out.println("Number of classes=" + nclases);
} catch (Exception e) {
System.out.println("DBG: Exception in readSet");
e.printStackTrace();
}
}
/**
* It returns a string with the file header
* @return String a string with the file header
*/
public String copiaCabeceraTest() {
// Header of the output file
String p = new String("");
p = "@relation " + Attributes.getRelationName() + "\n";
p += Attributes.getInputAttributesHeader();
p += Attributes.getOutputAttributesHeader();
p += Attributes.getInputHeader() + "\n";
p += Attributes.getOutputHeader() + "\n";
p += "@data\n";
return p;
}
/**
* It converts all values of the data-set to the interval [0,1]
*/
public void normaliza() {
int atts = this.getnentradas();
double maximos[] = new double[atts];
for (int j = 0; j < atts; j++) {
maximos[j] = 1.0 / (emaximo[j] - eminimo[j]);
}
for (int i = 0; i < this.getndatos(); i++) {
for (int j = 0; j < atts; j++) {
if (isMissing(i, j)) {
; //no escojo este ejemplo
} else {
X[i][j] = (X[i][j] - eminimo[j]) * maximos[j];
}
}
}
}
/**
* It returns the types of each input (NOMINAL[0] or NUMERICAL[1])
* @return int[] An array that contains 0 or 1 wether the attributes are nominal or numerical
*/
public int[] tiposVar() {
int[] tipos = new int[this.nentradas];
for (int i = 0; i < this.nentradas; i++) {
tipos[i] = 1;
if (Attributes.getAttribute(i).getType() == Attribute.NOMINAL) {
tipos[i] = 0;
}
}
return tipos;
}
/**
* It returns the upper range of the i-th attribute
* @param i int Id of the input attribute
* @return double Maximum value that the attribute can have
*/
private double getUpperRange(int i) {
return Attributes.getAttribute(i).getMaxAttribute();
}
/**
* It returns the lower range of the i-th attribute
* @param i int Id of the input attribute
* @return double Minimum value that the attribute can have
*/
private double getLowerRange(int i) {
return Attributes.getAttribute(i).getMinAttribute();
}
/**
* It returns the upper and lower ranges for each attribute of the data-set
* @return double[][] An array with two values per attribute: upper lower range and upper range
*/
public double[][] getRanges() {
double rangos[][] = new double[this.getnentradas()][2];
for (int i = 0; i < this.getnentradas(); i++) {
rangos[i][0] = getLowerRange(i);
rangos[i][1] = getUpperRange(i);
}
return rangos;
}
/**
* It returns the attribute type
* @return int[] An array of integers, each one of them represents one type (NOMINAL,NUMERICO)
*/
public int[] getTypes() {
int tipos[] = new int[this.getnentradas()];
for (int i = 0; i < this.getnentradas(); i++) {
tipos[i] = Attributes.getAttribute(i).getType() + 2;
}
return tipos;
}
/**
* It computes the most common values for each attribute
*/
public void calculaMasComunes() {
comunes = new int[nentradas];
int[] aux = new int[ndatos];
for (int i = 0; i < nentradas; i++) {
for (int j = 0; j < ndatos; j++) {
if (this.isMissing(j, i)) {
aux[j] = -1;
} else {
aux[j] = (int) X[j][i];
}
}
Arrays.sort(aux);
int mascomun = aux[0];
int contador = 1, j;
for (j = 1; (aux[j] == mascomun) && (j < ndatos - 1); j++, contador++) {
;
}
int contador2 = 1;
int mascomun2 = aux[j];
if (j + 1 < ndatos) {
for (j = j + 1; j < ndatos; j++) {
if (aux[j] == mascomun2) {
contador2++;
} else {
mascomun2 = aux[j];
if (contador2 > contador) {
contador = contador2;
mascomun = mascomun2;
contador2 = 1;
}
}
}
}
comunes[i] = mascomun;
}
}
/**
* It return the most common value for the i-th atribute
* @param i int Attribute id
* @return int most common value for the i-th atribute
*/
public int masComun(int i) {
return comunes[i];
}
/**
* It checks if in the data-set there is any continous input
* @return boolean True if there exists any continous input. False in other case
*/
public boolean hayAtributosContinuos() {
return Attributes.hasRealAttributes();
}
/**
* It returns the name of the variables of the problem
* @return String[] An Array the name of the variables of the problem
*/
public String[] dameNombres() {
String[] salida = new String[nvariables];
for (int i = 0; i < nentradas; i++) {
salida[i] = Attributes.getInputAttribute(i).getName();
}
salida[nentradas] = Attributes.getOutputAttribute(0).getName();
return salida;
}
/**
* It return the class values
* @return String[] An array with the nominal values for the class "id"
*/
public String[] dameClases() {
String[] salida = new String[nclases];
Attribute at = Attributes.getOutputAttribute(0);
if (at.getType() == at.NOMINAL) {
for (int i = 0; i < nclases; i++) {
salida[i] = at.getNominalValue(i);
}
} else {
salida = null;
}
return salida;
}
/**
* Devuelve el nombre de cada valor para los distintos atributos
* @return String[][] Una cadena con el valor de cada atributo en formato CADENA (sea nominal o numerico)
*/
public String[][] dameValores() {
String[][] salida = new String[nentradas][];
for (int i = 0; i < nentradas; i++) {
Attribute at = Attributes.getInputAttribute(i);
if (at.getType() == at.NOMINAL) {
salida[i] = new String[at.getNumNominalValues()];
for (int j = 0; j < at.getNumNominalValues(); j++) {
salida[i][j] = at.getNominalValue(j);
}
} else if (at.getType() == at.INTEGER) {
salida[i] = new String[(int) at.getMaxAttribute() -
(int) at.getMinAttribute() + 1];
for (int j = 0, k = (int) at.getMinAttribute();
j <
(int) at.getMaxAttribute() - (int) at.getMinAttribute() +
1; j++,
k++) {
salida[i][j] = "" + k;
}
}
}
return salida;
}
/**
* It returns an array with the lower ranges of the attributes
* @return double[] an array with the lower ranges of the attributes (0 if nominal)
*/
public double[] valoresMin() {
double[] min = new double[nentradas];
for (int i = 0; i < nentradas; i++) {
Attribute at = Attributes.getInputAttribute(i);
if (at.getType() == at.INTEGER) {
min[i] = at.getMinAttribute();
} else {
min[i] = 0;
}
}
return min;
}
}