/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // IKNN.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 2-6-2009. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Preprocess.Instance_Selection.IKNN; import keel.Algorithms.Preprocess.Basic.*; import org.core.*; import java.util.StringTokenizer; import java.util.Arrays; public class IKNN extends Metodo { /*Own parameters of the algorithm*/ double gammaRate; double xiMultiplicative; double xiExponential; public IKNN (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int i, j, l, m; int nClases; boolean marcas[]; int nSel; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; int attractive[]; double minDist, dist; boolean stop = false; Referencia order[]; int nElem; int Xi_t, t; int numberClass[]; int minClass; long tiempo = System.currentTimeMillis(); /*Getting the number of differents classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; numberClass = new int[nClases]; Arrays.fill(numberClass, 0); for (i=0; i<clasesTrain.length; i++) { numberClass[clasesTrain[i]]++; } minClass = numberClass[0]; for (i=1; i<numberClass.length; i++) { if (numberClass[i] < minClass) { minClass = numberClass[i]; } } /*Inicialization of the flagged instances vector for a posterior copy*/ marcas = new boolean[datosTrain.length]; for (i=0; i<datosTrain.length; i++) marcas[i] = true; nSel = datosTrain.length; attractive = new int[datosTrain.length]; /*Body of the algorithm. The attractive capacity is computed for all instances in S and those with capacities greater than gamma and are among the Xi(t) portion of the highest capacities are eliminated in each iteration*/ t=1; while (!stop) { Arrays.fill(attractive, 0); /*STEP 2*/ for (i=0; i<datosTrain.length; i++) { if (marcas[i]) { minDist = Double.POSITIVE_INFINITY; for (j=0; j<datosTrain.length; j++) { if (marcas[j] && clasesTrain[i] != clasesTrain[j]) { dist = KNN.distancia(datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu); if (dist < minDist) { minDist = dist; } } } for (j=0; j<datosTrain.length; j++) { if (marcas[j] && i!=j) { dist = KNN.distancia(datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu); if (dist < minDist) { attractive[i]++; } } } } } /*STEP 3*/ stop = true; nElem=0; for (i=0; i<datosTrain.length; i++) { if (marcas[i]) { if (attractive[i] >= ((int)((double)minClass)*gammaRate)) { stop = false; nElem++; } } } if (!stop) { /*STEP 4*/ order = new Referencia[nElem]; j = 0; for (i=0; i<datosTrain.length; i++) { if (marcas[i]) { if (attractive[i] >= ((int)((double)minClass)*gammaRate)) { order[j] = new Referencia(i,attractive[i]); j++; } } } Arrays.sort(order); Xi_t = (int)((xiMultiplicative * Math.pow(((double)(t+1)),xiExponential))*datosTrain.length); for (i=0; i<Xi_t && i<order.length; i++) { marcas[order[i].entero] = false; nSel--; } t++; } } /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance will be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; conjR[l][j] = realTrain[m][j]; conjN[l][j] = nominalTrain[m][j]; conjM[l][j] = nulosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } System.out.println("IKNN "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting Gamma*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); gammaRate = Double.parseDouble(tokens.nextToken().substring(1)); /*Getting Gamma*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); xiMultiplicative = Double.parseDouble(tokens.nextToken().substring(1)); /*Getting Gamma*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); xiExponential = Double.parseDouble(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; } }