/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * File: OSS.java * </p> * * The OSS algorithm is an undersampling method used to deal with the imbalanced * problem. * * @author Written by Salvador Garcia Lopez (University of Granada) 30/03/2006 * @author Modified by Victoria Lopez Morales (University of Granada) 23/07/2010 * @author Modified by Victoria Lopez Morales (University of Granada) 21/09/2010 * @version 0.1 * @since JDK1.5 * */ package keel.Algorithms.ImbalancedClassification.Resampling.OSS; import keel.Algorithms.Preprocess.Basic.*; import keel.Dataset.Attribute; import keel.Dataset.Attributes; import keel.Dataset.Instance; import org.core.*; import java.util.StringTokenizer; import java.util.Arrays; public class OSS extends Metodo { /** * <p> * The OSS algorithm is an undersampling method used to deal with the imbalanced * problem. * </p> */ /*Own parameters of the algorithm*/ private long semilla; private int k; /** * <p> * Constructor of the class. It configures the execution of the algorithm by * reading the configuration script that indicates the parameters that are * going to be used. * </p> * * @param ficheroScript Name of the configuration script that indicates the * parameters that are going to be used during the execution of the algorithm */ public OSS (String ficheroScript) { super (ficheroScript); } /** * <p> * The main method of the class that includes the operations of the algorithm. * It includes all the operations that the algorithm has and finishes when it * writes the output information into files. * </p> */ public void run () { int i, j, l, m; int nPos = 0, nNeg = 0; int posID; int tmp; boolean marcas[]; int nSel; double conjS[][]; int clasesS[]; double conjS2[][]; int clasesS2[]; double minDist, dist; int pos; int S[]; int nClases; int baraje[]; int tamS=0; int claseObt; int cont; int busq; long tiempo = System.currentTimeMillis(); /*TOMEK LINKS PART*/ /*Count of number of positive and negative examples*/ for (i=0; i<clasesTrain.length; i++) { if (clasesTrain[i] == 0) nPos++; else nNeg++; } if (nPos > nNeg) { tmp = nPos; nPos = nNeg; nNeg = tmp; posID = 1; } else { posID = 0; } /*Inicialization of the instance flagged vector of the S set*/ marcas = new boolean[datosTrain.length]; for (i=0; i<datosTrain.length; i++) { marcas[i] = true; } nSel = datosTrain.length; for (i=0;i<datosTrain.length; i++) { minDist = Double.POSITIVE_INFINITY; pos = 0; for (j=0; j<datosTrain.length; j++) { if (i != j) { dist = KNN.distancia (datosTrain[i],datosTrain[j]); if (dist < minDist) { minDist = dist; pos = j; } } } if (clasesTrain[i] != clasesTrain[pos]) { if (clasesTrain[i] != posID) { if (marcas[i]==true) { marcas[i] = false; nSel--; } } else { if (marcas[pos]==true) { marcas[pos] = false; nSel--; } } } } /*Construction of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance will evaluate for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } /*CNN PART*/ /*Inicialization of the candidates set*/ S = new int[conjS.length]; for (i=0; i<S.length; i++) S[i] = Integer.MAX_VALUE; /*Inserting an element of mayority class*/ Randomize.setSeed (semilla); pos = Randomize.Randint (0, clasesS.length-1); while (clasesS[pos] == posID) pos = (pos + 1) % clasesS.length; S[tamS] = pos; tamS++; /*Insert all subset of minority class*/ for (i=0; i<clasesS.length; i++) { if (clasesS[i] == posID) { S[tamS] = i; tamS++; } } /*Algorithm body. We resort randomly the instances of T and compare with the rest of S. If an instance doesn�t classified correctly, it is inserted in S*/ baraje = new int[conjS.length]; for (i=0; i<conjS.length; i++) baraje[i] = i; for (i=0; i<conjS.length; i++) { pos = Randomize.Randint (i, conjS.length-1); tmp = baraje[i]; baraje[i] = baraje[pos]; baraje[pos] = tmp; } for (i=0; i<conjS.length; i++) { if (clasesS[i] != posID) { //only for mayority class instances /*Construction of the S set from the previous vector S*/ conjS2 = new double[tamS][conjS[0].length]; clasesS2 = new int[tamS]; for (j=0; j<tamS; j++) { for (l=0; l<conjS[0].length; l++) conjS2[j][l] = conjS[S[j]][l]; clasesS2[j] = clasesS[S[j]]; } /*Do KNN to the instance*/ claseObt = KNN.evaluacionKNN (k, conjS2, clasesS2, conjS[baraje[i]], 2); if (claseObt != clasesS[baraje[i]]) {//fail in the class, it is included in S Arrays.sort(S); busq = Arrays.binarySearch(S, baraje[i]); if (busq < 0) { S[tamS] = baraje[i]; tamS++; } } } } /*Construction of the S set from the previous vector S*/ conjS2 = new double[tamS][conjS[0].length]; clasesS2 = new int[tamS]; for (j=0; j<tamS; j++) { for (l=0; l<conjS[0].length; l++) conjS2[j][l] = conjS[S[j]][l]; clasesS2[j] = clasesS[S[j]]; } System.out.println("OSS "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjS2, clasesS2, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } /** * <p> * Obtains the parameters used in the execution of the algorithm and stores * them in the private variables of the class * </p> * * @param ficheroScript Name of the configuration script that indicates the * parameters that are going to be used during the execution of the algorithm */ public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the seed*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); semilla = Long.parseLong(tokens.nextToken().substring(1)); /*Getting the number of neighbors*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); k = Integer.parseInt(tokens.nextToken().substring(1)); } /** * This function builds the data matrix for reference data and normalizes inputs values */ protected void normalizar () throws CheckException { int i, j, k; Instance temp; double caja[]; StringTokenizer tokens; boolean nulls[]; /*Check if dataset corresponding with a classification problem*/ if (Attributes.getOutputNumAttributes() < 1) { throw new CheckException ("This dataset haven?t outputs, so it not corresponding to a classification problem."); } else if (Attributes.getOutputNumAttributes() > 1) { throw new CheckException ("This dataset have more of one output."); } if (Attributes.getOutputAttribute(0).getType() == Attribute.REAL) { throw new CheckException ("This dataset have an input attribute with floating values, so it not corresponding to a classification problem."); } entradas = Attributes.getInputAttributes(); salida = Attributes.getOutputAttribute(0); nEntradas = Attributes.getInputNumAttributes(); tokens = new StringTokenizer (training.getHeader()," \n\r"); tokens.nextToken(); relation = tokens.nextToken(); datosTrain = new double[training.getNumInstances()][Attributes.getInputNumAttributes()]; clasesTrain = new int[training.getNumInstances()]; caja = new double[1]; nulosTrain = new boolean[training.getNumInstances()][Attributes.getInputNumAttributes()]; nominalTrain = new int[training.getNumInstances()][Attributes.getInputNumAttributes()]; realTrain = new double[training.getNumInstances()][Attributes.getInputNumAttributes()]; for (i=0; i<training.getNumInstances(); i++) { temp = training.getInstance(i); nulls = temp.getInputMissingValues(); datosTrain[i] = training.getInstance(i).getAllInputValues(); for (j=0; j<nulls.length; j++) if (nulls[j]) { datosTrain[i][j]=0.0; nulosTrain[i][j] = true; } caja = training.getInstance(i).getAllOutputValues(); clasesTrain[i] = (int) caja[0]; for (k = 0; k < datosTrain[i].length; k++) { if (Attributes.getInputAttribute(k).getType() == Attribute.NOMINAL) { nominalTrain[i][k] = (int)datosTrain[i][k]; datosTrain[i][k] /= Attributes.getInputAttribute(k). getNominalValuesList().size() - 1; } else { realTrain[i][k] = datosTrain[i][k]; datosTrain[i][k] -= Attributes.getInputAttribute(k).getMinAttribute(); datosTrain[i][k] /= Attributes.getInputAttribute(k).getMaxAttribute() - Attributes.getInputAttribute(k).getMinAttribute(); if (Double.isNaN(datosTrain[i][k])){ datosTrain[i][k] = realTrain[i][k]; } } } } datosTest = new double[test.getNumInstances()][Attributes.getInputNumAttributes()]; clasesTest = new int[test.getNumInstances()]; caja = new double[1]; for (i=0; i<test.getNumInstances(); i++) { temp = test.getInstance(i); nulls = temp.getInputMissingValues(); datosTest[i] = test.getInstance(i).getAllInputValues(); for (j=0; j<nulls.length; j++) if (nulls[j]) { datosTest[i][j]=0.0; } caja = test.getInstance(i).getAllOutputValues(); clasesTest[i] = (int) caja[0]; } } //end-method }