/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.RE_SL_Methods.LEL_TSK; import java.lang.Math; import org.core.*; class AG { public double prob_cruce, prob_mutacion; public int Mu_next, Trials; public double Best_current_perf; public int Best_guy; public int long_poblacion, n_genes; public int[] sample; public int last; public Structure[] Old; public Structure[] New; public Structure[] temp; public Adap_Sel fun_adap; public AG(int n_poblacion, int genes, double cruce, double mutacion, Adap_Sel funcion) { int i; long_poblacion = n_poblacion; n_genes = genes; prob_cruce = cruce; prob_mutacion = mutacion / (double) n_genes; fun_adap = funcion; sample = new int[long_poblacion]; Old = new Structure[long_poblacion]; New = new Structure[long_poblacion]; for (i = 0; i < long_poblacion; i++) { Old[i] = new Structure(n_genes); New[i] = new Structure(n_genes); } } public void Intercambio() { temp = Old; Old = New; New = temp; } /** Inicialization of the population */ public void Initialize() { int i, j; last = (int) ( (prob_cruce * long_poblacion) - 0.5); Trials = 0; if (prob_mutacion < 1.0) { Mu_next = (int) Math.ceil(Math.log(Randomize.Rand()) / Math.log(1.0 - prob_mutacion)); } else { Mu_next = 1; } for (j = 0; j < n_genes; j++) { New[0].GeneSel[j] = '1'; } New[0].n_e = 1; for (i = 1; i < long_poblacion; i++) { for (j = 0; j < n_genes; j++) { if (Randomize.RandintClosed(0, 1) == 0) { New[i].GeneSel[j] = '0'; } else { New[i].GeneSel[j] = '1'; } } New[i].n_e = 1; } } /* Selection based on the Baker's Estocastic Universal Sampling */ void Select() { double expected, factor, perf, ptr, sum, rank_max, rank_min; int i, j, k, best, temp; rank_min = 0.75; /* we assign the ranking to each element: The best: ranking = long_poblacion-1 The worse: ranking = 0 */ for (i = 0; i < long_poblacion; i++) { Old[i].n_e = 0; } /* we look for the best ordered non element */ for (i = 0; i < long_poblacion - 1; i++) { best = -1; perf = 0.0; for (j = 0; j < long_poblacion; j++) { if ( (Old[j].n_e == 0) && (best == -1 || Old[j].Perf < perf)) { perf = Old[j].Perf; best = j; } } /* we assign the ranking */ Old[best].n_e = long_poblacion - 1 - i; } /* we normalize the ranking */ rank_max = 2.0 - rank_min; factor = (rank_max - rank_min) / (double) (long_poblacion - 1); /* we assign the number of replicas of each chormosome according to the select probability */ k = 0; ptr = Randomize.Rand(); for (sum = i = 0; i < long_poblacion; i++) { expected = rank_min + Old[i].n_e * factor; for (sum += expected; sum >= ptr; ptr++) { sample[k++] = i; } } /* we complete the population if necessary */ if (k != long_poblacion) { for (; k < long_poblacion; k++) { sample[k] = Randomize.RandintClosed(0, long_poblacion - 1); } } /* we shuffle the selected chromosomes */ for (i = 0; i < long_poblacion; i++) { j = Randomize.RandintClosed(i, long_poblacion - 1); temp = sample[j]; sample[j] = sample[i]; sample[i] = temp; } /* we create the new population */ for (i = 0; i < long_poblacion; i++) { k = sample[i]; for (j = 0; j < n_genes; j++) { New[i].GeneSel[j] = Old[k].GeneSel[j]; } New[i].Perf = Old[k].Perf; New[i].n_e = 0; } } /* Operador de cruce multipunto en dos puntos */ void Cruce_Multipunto() { int mom, dad, xpoint1, xpoint2, i, j; char temp; for (mom = 0; mom < last; mom += 2) { dad = mom + 1; /* we generate the 2 crossing points */ xpoint1 = Randomize.RandintClosed(0, n_genes - 1); if (xpoint1 != n_genes - 1) { xpoint2 = Randomize.RandintClosed(xpoint1 + 1, n_genes - 1); } else { xpoint2 = n_genes - 1; } /* we cross the individuals between xpoint1 and xpoint2 */ for (i = xpoint1; i <= xpoint2; i++) { temp = New[mom].GeneSel[i]; New[mom].GeneSel[i] = New[dad].GeneSel[i]; New[dad].GeneSel[i] = temp; } New[mom].n_e = 1; New[dad].n_e = 1; } } /* Operador de Mutacion Uniforme */ void Mutacion_Uniforme() { int posiciones, i, j; double m; posiciones = n_genes * long_poblacion; if (prob_mutacion > 0) { while (Mu_next < posiciones) { /* we determinate the chromosome and the GeneSel */ i = Mu_next / n_genes; j = Mu_next % n_genes; /* we mutate the GeneSel */ if (New[i].GeneSel[j] == '0') { New[i].GeneSel[j] = '1'; } else { New[i].GeneSel[j] = '0'; } New[i].n_e = 1; /* we calculate the next position */ if (prob_mutacion < 1) { m = Randomize.Rand(); Mu_next += (int) Math.ceil(Math.log(m) / Math.log(1.0 - prob_mutacion)); } else { Mu_next += 1; } } } Mu_next -= posiciones; } /** Fitness Function */ void Evaluate() { double performance; int i, j; for (i = 0; i < long_poblacion; i++) { /* if the chromosome aren't evaluated, it's evaluate */ if (New[i].n_e == 1) { New[i].Perf = fun_adap.eval(New[i].GeneSel); performance = New[i].Perf; New[i].n_e = 0; Trials++; /* we increment the number of evaluated chromosomes */ } else { performance = New[i].Perf; } /* we calculate the position of the best individual */ if (i == 0) { Best_current_perf = performance; Best_guy = 0; } else if (performance < Best_current_perf) { Best_current_perf = performance; Best_guy = i; } } } /* Elitist selection */ void Elitist() { int i, k, found; /* if the best individual of the old population aren't in the new population, we remplace the last individual for this */ for (i = 0, found = 0; i < long_poblacion && (found == 0); i++) { for (k = 0, found = 1; (k < n_genes) && (found == 1); k++) { if (New[i].GeneSel[k] != Old[Best_guy].GeneSel[k]) { found = 0; } } } if (found == 0) { for (k = 0; k < n_genes; k++) { New[long_poblacion - 1].GeneSel[k] = Old[Best_guy].GeneSel[k]; } New[long_poblacion - 1].Perf = Old[Best_guy].Perf; New[long_poblacion - 1].n_e = 0; } } /** Returns the best solution*/ public char[] solucion() { return (New[Best_guy].GeneSel); } /** Returns the fitness of the best solution */ public double solucion_ec() { return (New[Best_guy].Perf); } }