/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Alcalaetal; /** * <p> * @author Written by Alvaro Lopez * @version 1.1 * @since JDK1.6 * </p> */ import java.io.FileNotFoundException; import java.io.IOException; import java.io.PrintWriter; import java.util.ArrayList; import org.core.Randomize; import keel.Dataset.Attributes; public class Alcalaetal { /** * <p> * It gathers all the parameters, launches the algorithm, and prints out the results * </p> */ private myDataset trans; private String rulesFilename; private String valuesFilename; private String uniformFuzzyAttributesFilename; private String adjustedFuzzyAttributesFilename; private String geneticLearningLogFilename; private AlcalaetalProcess proc; private ArrayList<AssociationRule> associationRulesSet; private int nEvaluations; private int popSize; private int nBitsGene; private double phi; private double d; private int nFuzzyRegionsForNumericAttributes; private boolean useMaxForOneFrequentItemsets; private double minSupport; private double minConfidence; private boolean somethingWrong = false; //to check if everything is correct. /** * Default constructor */ public Alcalaetal() { } /** * It reads the data from the input files and parse all the parameters * from the parameters array. * @param parameters parseParameters It contains the input files, output files and parameters */ public Alcalaetal(parseParameters parameters) { this.rulesFilename = parameters.getAssociationRulesFile(); this.adjustedFuzzyAttributesFilename = parameters.getOutputFile(0); this.valuesFilename = parameters.getOutputFile(1); this.uniformFuzzyAttributesFilename = parameters.getOutputFile(2); this.geneticLearningLogFilename = parameters.getOutputFile(3); try { System.out.println("\nReading the transaction set: " + parameters.getTransactionsInputFile()); this.trans = new myDataset(); this.trans.readDataSet(parameters.getTransactionsInputFile()); } catch (IOException e) { System.err.println("There was a problem while reading the input transaction set: " + e); somethingWrong = true; } long seed = Long.parseLong(parameters.getParameter(0)); this.nEvaluations = Integer.parseInt(parameters.getParameter(1)); this.popSize = Integer.parseInt(parameters.getParameter(2)); this.nBitsGene = Integer.parseInt(parameters.getParameter(3)); this.phi = Double.parseDouble(parameters.getParameter(4)); this.d = Double.parseDouble(parameters.getParameter(5)); this.nFuzzyRegionsForNumericAttributes = Integer.parseInt(parameters.getParameter(6)); this.useMaxForOneFrequentItemsets = Boolean.parseBoolean(parameters.getParameter(7)); this.minSupport = Double.parseDouble(parameters.getParameter(8)); this.minConfidence = Double.parseDouble(parameters.getParameter(9)); Randomize.setSeed(seed); } /** * It launches the algorithm */ public void execute() { if (somethingWrong) { //We do not execute the program System.err.println("An error was found"); System.err.println("Aborting the program"); //We should not use the statement: System.exit(-1); } else { this.proc = new AlcalaetalProcess(this.trans, this.nEvaluations, this.popSize, this.nBitsGene, this.phi, this.d, this.nFuzzyRegionsForNumericAttributes, this.useMaxForOneFrequentItemsets, this.minSupport, this.minConfidence); this.proc.run(); this.associationRulesSet = this.proc.getRulesSet(); this.proc.printReport(this.associationRulesSet); /*for (int i=0; i < this.associationRulesSet.size(); i++) { System.out.println(this.associationRulesSet.get(i)); }*/ try { int r, i; AssociationRule ar; Itemset itemset; this.saveFuzzyAttributes(this.uniformFuzzyAttributesFilename, this.proc.getUniformFuzzyAttributes()); this.saveFuzzyAttributes(this.adjustedFuzzyAttributesFilename, this.proc.getAdjustedFuzzyAttributes()); this.saveGeneticLearningLog(this.geneticLearningLogFilename, this.proc.getGeneticLearningLog()); PrintWriter rules_writer = new PrintWriter(this.rulesFilename); PrintWriter values_writer = new PrintWriter(this.valuesFilename); rules_writer.println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>"); rules_writer.println("<rules>"); values_writer.println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>"); values_writer.print("<values "); values_writer.println("n_one_frequent_itemsets=\"" + this.proc.getNumberOfOneFrequentItemsets() + "\" n_rules=\"" + this.associationRulesSet.size() + "\">"); for (r=0; r < this.associationRulesSet.size(); r++) { ar = this.associationRulesSet.get(r); rules_writer.println("<rule id = \"" + r + "\" />"); values_writer.println("<rule id=\"" + r + "\" rule_support=\"" + ar.getRuleSupport() + "\" antecedent_support=\"" + ar.getAntecedentSupport() + "\" confidence=\"" + ar.getConfidence() + "\"/>"); rules_writer.println("<antecedents>"); itemset = ar.getAntecedent(); for (i=0; i < itemset.size(); i++) this.createRule(itemset.get(i), this.proc.getAdjustedFuzzyAttributes(), rules_writer); rules_writer.println("</antecedents>"); rules_writer.println("<consequents>"); itemset = ar.getConsequent(); for (i=0; i < itemset.size(); i++) this.createRule(itemset.get(i), this.proc.getAdjustedFuzzyAttributes(), rules_writer); rules_writer.println("</consequents>"); rules_writer.println("</rule>"); } rules_writer.println("</rules>"); values_writer.println("</values>"); rules_writer.close(); values_writer.close(); System.out.println("\nAlgorithm Finished"); } catch (FileNotFoundException e) { e.printStackTrace(); } } } private void createRule(Item item, ArrayList<FuzzyAttribute> fuzzy_attributes, PrintWriter w) { int attr; boolean stop; FuzzyAttribute fuzzy_attr; FuzzyRegion[] fuzzy_regions; attr = item.getIDAttribute(); if (this.trans.isNominal(attr)) { w.print("<attribute name = \"" + this.trans.getAttributeName(attr) + "\" value=\""); w.print( ""+ this.trans.getNominalValue(attr, item.getIDLabel())); } else { stop = false; fuzzy_attr = fuzzy_attributes.get(0); for (int i=0; i < fuzzy_attributes.size() && !stop; i++) { fuzzy_attr = fuzzy_attributes.get(i); if (fuzzy_attr.getIdAttr() == item.getIDAttribute()) stop = true; } fuzzy_regions = fuzzy_attr.getFuzzyRegions(); w.print("<attribute name = \"" + trans.getAttributeName( fuzzy_attr.getIdAttr() ) + "\" value = \""); w.print( fuzzy_regions[ item.getIDLabel() ].getLabel() ); } w.println("\" />"); } private void saveFuzzyAttributes(String fuzzy_attrs_fname, ArrayList<FuzzyAttribute> fuzzy_attributes) throws FileNotFoundException { int attr, region, id_attr; boolean stop; FuzzyRegion[] fuzzy_regions; FuzzyAttribute fuzzy_attr; PrintWriter fuzzy_attrs_writer = new PrintWriter(fuzzy_attrs_fname); fuzzy_attrs_writer.println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>"); fuzzy_attrs_writer.println("<data_base>"); for (attr=0; attr < this.trans.getnVars(); attr++) { if (this.trans.isNominal(attr)) { fuzzy_attrs_writer.println("<attribute name = \"" + this.trans.getAttributeName(attr) + "\" nValues = \"" + this.trans.nValueNominal(attr) + "\" Type = \"" + this.trans.getAttributeTypeString(attr) + "\" >"); for (region=0; region < this.trans.nValueNominal(attr); region++) { fuzzy_attrs_writer.println("<value \"" + this.trans.getNominalValue(attr, region) + "\" />"); } } else { fuzzy_attrs_writer.println("<attribute name = \"" + this.trans.getAttributeName(attr) + "\" nValues = \"" + this.nFuzzyRegionsForNumericAttributes + "\" Type = \"" + this.trans.getAttributeTypeString(attr) + "\" >"); stop = false; fuzzy_attr = fuzzy_attributes.get(0); for (int i=0; i < fuzzy_attributes.size() && !stop; i++) { fuzzy_attr = fuzzy_attributes.get(i); if (fuzzy_attr.getIdAttr() == attr) stop = true; } fuzzy_regions = fuzzy_attr.getFuzzyRegions(); for (region=0; region < fuzzy_regions.length; region++) { fuzzy_attrs_writer.print("<value \"" + fuzzy_regions[region].getLabel() + "\" "); fuzzy_attrs_writer.print("\"" + fuzzy_regions[region].getX0() + "\" "); fuzzy_attrs_writer.print("\"" + fuzzy_regions[region].getX1() + "\" "); fuzzy_attrs_writer.println("\"" + fuzzy_regions[region].getX3() + "\" />"); } } fuzzy_attrs_writer.println("</attribute>"); } fuzzy_attrs_writer.println("</data_base>"); fuzzy_attrs_writer.close(); } private void saveGeneticLearningLog(String genetic_learning_log_fname, String xml_str) throws FileNotFoundException { PrintWriter genetic_learning_log_writer = new PrintWriter(genetic_learning_log_fname); genetic_learning_log_writer.println(xml_str); genetic_learning_log_writer.close(); } }