/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.RE_SL_Methods.mogulIRL; /** * <p>Title: </p> * * <p>Description: </p> * * <p>Copyright: Copyright (c) 2007</p> * * <p>Company: </p> * * @author not attributable * @version 1.0 */ import java.io.*; import java.util.*; import java.lang.Math; import org.core.*; class Tun_des { public double semilla; public long cont_soluciones; public long Gen, n_genes, n_reglas, n_generaciones; public int n_soluciones; public String fich_datos_chequeo, fich_datos_tst; public String fichero_conf, ruta_salida; public String fichero_br, fichero_reglas, fich_tra_obli, fich_tst_obli; public String informe = ""; public String datos_inter = ""; public String cadenaReglas = ""; public MiDataset tabla, tabla_tst; public BaseR_Tun_des base_reglas; public Adap_Tun_des fun_adap; public AG_Tun_des alg_gen; public Tun_des (String f_e, MiDataset train, MiDataset test) { fichero_conf = f_e; this.tabla = train; this.tabla_tst = test; } private String Quita_blancos(String cadena) { StringTokenizer sT = new StringTokenizer(cadena, "\t ", false); return (sT.nextToken()); } /** Reads the data of the configuration file */ public void leer_conf (){ int i, j; String cadenaEntrada, valor; double cruce, mutacion, a, b; int long_poblacion; // we read the file in a String cadenaEntrada = Fichero.leeFichero(fichero_conf); StringTokenizer sT = new StringTokenizer(cadenaEntrada, "\n\r=", false); // we read the algorithm's name sT.nextToken(); sT.nextToken(); // we read the name of the training and test files sT.nextToken(); valor = sT.nextToken(); StringTokenizer ficheros = new StringTokenizer(valor, "\t ", false); ficheros.nextToken(); fich_datos_chequeo = ((ficheros.nextToken()).replace('\"',' ')).trim(); fich_datos_tst = ((ficheros.nextToken()).replace('\"',' ')).trim(); // fichero_br = ((ficheros.nextToken()).replace('\"',' ')).trim(); // we read the name of the output files sT.nextToken(); valor = sT.nextToken(); ficheros = new StringTokenizer(valor, "\t ", false); fich_tra_obli = ((ficheros.nextToken()).replace('\"',' ')).trim(); fich_tst_obli = ((ficheros.nextToken()).replace('\"',' ')).trim(); // fichero_reglas = ((ficheros.nextToken()).replace('\"',' ')).trim(); String aux = ((ficheros.nextToken()).replace('\"',' ')).trim(); //Br inicial aux = ((ficheros.nextToken()).replace('\"',' ')).trim(); //BD fichero_br = ((ficheros.nextToken()).replace('\"',' ')).trim(); //BR salida de Select fichero_reglas = ((ficheros.nextToken()).replace('\"',' ')).trim(); //BR salida de Tuning ruta_salida = fich_tst_obli.substring(0, fich_tst_obli.lastIndexOf('/') + 1); // we read the seed of the random generator sT.nextToken(); valor = sT.nextToken(); semilla = Double.parseDouble(valor.trim()); Randomize.setSeed((long) semilla);; for (i = 0; i < 14; i++){ sT.nextToken(); //variable sT.nextToken(); //valor } // we read the Number of Iterations sT.nextToken(); valor = sT.nextToken(); n_generaciones = Long.parseLong(valor.trim()); // we read the Population Size sT.nextToken(); valor = sT.nextToken(); long_poblacion = Integer.parseInt(valor.trim()); // we read the Parameter a sT.nextToken(); valor = sT.nextToken(); a = Double.parseDouble(valor.trim()); // we read the Parameter b sT.nextToken(); valor = sT.nextToken(); b = Double.parseDouble(valor.trim()); // we read the Cross Probability sT.nextToken(); valor = sT.nextToken(); cruce = Double.parseDouble(valor.trim()); // we read the Mutation Probability sT.nextToken(); valor = sT.nextToken(); mutacion = Double.parseDouble(valor.trim()); // we create all the objects // tabla = new MiDataset(fich_datos_chequeo, true); // if (tabla.salir==false) { tabla.nuevaTabla(); tabla_tst.nuevaTabla(); base_reglas = new BaseR_Tun_des(fichero_br, tabla); fun_adap = new Adap_Tun_des(tabla, base_reglas, 0.0, 1); alg_gen = new AG_Tun_des(long_poblacion, base_reglas.n_etiq_distintas, cruce, mutacion, a, b, fun_adap); // } } public void run () { int i, j; double ec, el, ec_tst, el_tst; /* We read the configutate file and we initialize the structures and variables */ leer_conf(); if (tabla.salir==false) { Gen = 0; /* Generation of the initial population */ alg_gen.Initialize(base_reglas, tabla.n_variables); /* Evaluation of the initial population */ alg_gen.Evaluate (); Gen++; /* Main of the Genetic Algorithm */ do { /* Interchange of the new and old population */ alg_gen.Intercambio(); /* Selection by means of Baker */ alg_gen.Select (); /* Crossover */ alg_gen.Max_Min_Crossover(); /* Mutation */ alg_gen.Mutacion_No_Uniforme (Gen, n_generaciones); /* Elitist Selection */ alg_gen.Elitist (); /* Evaluation of the current population */ alg_gen.Evaluate (); /* we increment the counter */ Gen++; fun_adap.Decodifica (alg_gen.solucion()); fun_adap.Error_tra (); ec = fun_adap.EC; System.out.println(" Iteration=" + (Gen - 1) + " MSE=" + ec + " " + " #R=" + base_reglas.n_reglas); } while (Gen <= n_generaciones); /* we calcule the MSEs */ fun_adap.Decodifica (alg_gen.solucion()); fun_adap.Error_tra (); ec = fun_adap.EC; el = fun_adap.EL; tabla_tst = new MiDataset(fich_datos_tst, false); fun_adap.Error_tst (tabla_tst); ec_tst = fun_adap.EC; el_tst = fun_adap.EL; fun_adap.Cubrimientos_Base (); /* we write the RB */ cadenaReglas = base_reglas.BRtoString(); cadenaReglas += "\nMSEtra: " + ec + " MSEtst: " + ec_tst + "\nAverage covering degree: " + fun_adap.medcb + " Minimum covering degree: " + fun_adap.mincb; Fichero.escribeFichero(fichero_reglas, cadenaReglas); /* we write the obligatory output files*/ String salida_tra = tabla.getCabecera(); salida_tra += fun_adap.getSalidaObli(tabla); Fichero.escribeFichero(fich_tra_obli, salida_tra); String salida_tst = tabla_tst.getCabecera(); salida_tst += fun_adap.getSalidaObli(tabla_tst); Fichero.escribeFichero(fich_tst_obli, salida_tst); /* we write the MSEs in specific files */ Fichero.AnadirtoFichero(ruta_salida + "tundescomunR.txt", "" + base_reglas.n_reglas + "\n"); Fichero.AnadirtoFichero(ruta_salida + "tundescomunTRA.txt", "" + ec + "\n"); Fichero.AnadirtoFichero(ruta_salida + "tundescomunTST.txt", "" + ec_tst + "\n"); } } }