/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.UnsupervisedLearning.AssociationRules.FuzzyRuleLearning.Fingrams;
/**
* <p>
* @author Written by Alvaro Lopez
* @version 1.0
* @since JDK1.6
* </p>
*/
import java.util.*;
public class Itemset {
/**
* <p>
* It represents an itemset throughout the execution of the algorithm
* </p>
*/
private ArrayList<Item> itemset;
private double support;
/**
* <p>
* Default constructor
* </p>
*/
public Itemset() {
this.itemset = new ArrayList<Item>();
}
/**
* <p>
* It allows to clone correctly an itemset
* </p>
* @return A copy of the itemset
*/
public Itemset clone() {
Itemset item = new Itemset();
for (int i=0; i < this.itemset.size(); i++)
item.add( (itemset.get(i)).copy() );
item.support = this.support;
return item;
}
/**
* <p>
* It allows to add an item into an itemset
* </p>
* @param item An item to be added into the itemset
*/
public void add(Item item) {
this.itemset.add(item);
}
/**
* <p>
* It allows to add an item into an itemset
* </p>
* @param item An item to be added into the itemset
*/
public void addNew(Item item) {
boolean stop = false;
int i;
for (i=0; i < this.itemset.size() && !stop; i++) {
if ((this.itemset.get(i).getVariable() == item.getVariable()) && (this.itemset.get(i).getValue() == item.getValue())) stop = true;
}
if (!stop) this.itemset.add(item);
}
/**
* <p>
* It allows to add an item into an itemset
* </p>
* @param item An item to be added into the itemset
*/
public void addItemset(Itemset newItemset) {
for (int i=0; i < newItemset.size(); i++) {
this.itemset.add(newItemset.get(i).copy());
}
}
/**
* <p>
* It returns the item stored at the index "pos" within an itemset
* </p>
* @param pos The index of the item to be returned
* @return The item which is stored at the index "pos" of the itemset
*/
public Item get(int pos) {
return ( this.itemset.get(pos) );
}
/**
* <p>
* It allows to remove the item stored at the index "pos" within an itemset
* </p>
* @param pos The index of the item to be removed
* @return The item which was previously removed from the itemset
*/
public Item remove(int pos) {
return ( this.itemset.remove(pos) );
}
/**
* <p>
* It returns the number of items contained into an itemset
* </p>
* @return A value representing the number of items contained into the itemset
*/
public int size() {
return ( this.itemset.size() );
}
/**
* <p>
* It returns the support of an itemset
* </p>
* @return A value representing the support of the itemset
*/
public double getSupport() {
return this.support;
}
/**
* <p>
* It computes the support of an itemset
* </p>
* @param fuzzyDataset The instance of the fuzzy dataset for dealing with its fuzzy transactions
* @return An array of integer representing the TIDs covered by the itemset
*/
public String calculateSupport(myDataset dataset, DataBase database, double umbral) {
int i;
double degree;
double[] example;
String covered_tids = "";
this.support = 0.0;
for (i=0; i < dataset.getnTrans(); i++) {
example = dataset.getExample(i);
degree = this.matching(example, database);
if (degree > umbral) {
this.support += degree;
if (covered_tids.equalsIgnoreCase("")) covered_tids = covered_tids + "" + i + "(" + degree + ")";
else covered_tids = covered_tids + ", " + i + "(" + degree + ")";
}
}
this.support /= dataset.getnTrans();
return covered_tids;
}
private double matching(double[] example, DataBase database) {
return (this.computeMinimum(example, database));
}
private double computeMinimum(double[] example, DataBase database) {
int i;
double min, value;
Item item;
min = 1.0;
for (i=0; i < this.itemset.size(); i++) {
item = this.itemset.get(i);
value = database.matching(item.getVariable(), item.getValue(), example[item.getVariable()]);
if (value < min) min = value;
}
return min;
}
}