/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet;
/**
* <p>
* @author Written by Pedro Antonio Gutierrez Penya, Aaron Ruiz Mora (University of Cordoba) 17/07/2007
* @version 0.1
* @since JDK1.5
* </p>
*/
public interface INeuralNet{
/**
* <p>
* Represents a neural net
* </p>
*/
/////////////////////////////////////////////////////////////////
// ----------------------------------------------- Net attributes
/////////////////////////////////////////////////////////////////
/**
* <p>
* Returns the current number of hidden layers of the neural net
* </p>
* @return int Number of hidden layers
*/
public int getNofhlayers();
/**
* <p>
* Returns the input layer of this neural net
* </p>
* @return InputLayer Input layer of the net
*/
public InputLayer getInputLayer();
/**
* <p>
* Returns a specific hidden layer of the neural net
* </p>
* @param index Number of layer to return
* @return LinkedLayer Hidden layer
*/
public LinkedLayer getHlayer(int index);
/**
* <p>
* Returns the output layer of this neural net
* </p>
* @return LinkedLayer Output layer of the net
*/
public LinkedLayer getOutputLayer();
/**
* <p>
* Sets the input layer of this neural net
* </p>
* @param inputLayer New input layer of the net
*/
public void setInputLayer(InputLayer inputLayer);
/**
* <p>
* Adds a new layer to the neural net
* </p>
* @param layer New hidden layer
*/
public void addHlayer(LinkedLayer layer);
/**
* <p>
* Sets the output layer of this neural net
* </p>
* @param outputLayer New output layer of the net
*/
public void setOutputLayer(LinkedLayer outputLayer);
/////////////////////////////////////////////////////////////////
// ----------------------------------------------- Public methods
/////////////////////////////////////////////////////////////////
/**
* <p>
* Returns a copy of the neural net
* </p>
* @return INeuralNet Copy of the neural net
*/
public INeuralNet copy();
/**
* <p>
* Checks if this neural net is equal to another
* </p>
* @param other Other neural net to compare
* @return true if both neural nets are equals
*/
public boolean equals(INeuralNet other);
/**
* <p>
* Returns an integer number that identifies the neural net
* </p>
* @return int Hashcode
*/
public int hashCode();
/**
* <p>
* Checks if this neural net is full of neurons
* </p>
* @return true if the neural net is full of neurons
*/
public boolean neuronsFull();
/**
* <p>
* Checks if this neural net is empty of neurons
* </p>
* @return true if the neural net is empty of neurons
*/
public boolean neuronsEmpty();
/**
* <p>
* Checks if this neural net is full of links
* </p>
* @return true if the neural net is full of links
*/
public boolean linksFull();
/**
* <p>
* Checks if this neural net is empty of links
* </p>
* @return true if the neural net is empty of links
*/
public boolean linksEmpty();
/**
* <p>
* Returns the number of hidden neurons of this neural net
* </p>
* @return int Number of hidden neurons
*/
public int getNofhneurons();
/**
* <p>
* Returns the number of effective links of this neural net
* </p>
* @return int Number of effective links
*/
public int getNoflinks();
/**
* <p>
* Keep relevant links, that is, those links whose weight is higher
* than certain number
* </p>
* @param significativeWeight Significative weight
*/
public void keepRelevantLinks(double significativeWeight);
}