/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Albert Orriols (La Salle, Ram�n Llull University - Barcelona) 28/03/2004 * @author Modified by Xavi Sol� (La Salle, Ram�n Llull University - Barcelona) 03/12/2008 * @version 1.1 * @since JDK1.2 * </p> */ package keel.Algorithms.Genetic_Rule_Learning.XCS; import keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config; import java.lang.*; import java.io.*; import java.util.*; public class RouletteSelection implements Selection{ /** * <p> * This class implements Selection roulette. * </p> */ /////////////////////////////////////// // attributes /** * <p> * It's a roulette object. * </p> * */ private Roulette roul; /////////////////////////////////////// // operations /** * <p> * Creates a RouletteSelection object. * </p> * */ public RouletteSelection() { roul = null; } // end RouletteSelection /** * <p> * It creates and initializes the roulette with the fitness of all * classifiers in the population. * </p> * <p> * * @param pop is the action set where the selection has to be applied. * </p> * <p> * @see Roulette * </p> */ public void init(Population pop) { int i = 0; double lowerFitness=0; roul = new Roulette (pop.getMacroClSum()); for (i=0; i<pop.getMacroClSum(); i++){ roul.add(pop.getClassifier(i).getFitness() /*- lowerFitness*/); } } // end init /** * <p> * Performs the roulette wheel selection * </p> * <p> * @param pop is the population. * </p> * <p> * @return a Classifier with the selected classifier * </p> */ public Classifier makeSelection(Population pop) { int i = roul.selectRoulette(); return pop.getClassifier(i); } // end makeSelection } // end RouletteSelection