/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
/**
* <p>
* @author Written by Luciano Sanchez (University of Oviedo) 21/01/2004
* @author Modified by J.R. Villar (University of Oviedo) 19/12/2008
* @version 1.0
* @since JDK1.4
* </p>
*/
package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Classifier;
//import keel.Algorithms.Fuzzy_Rule_Learning.Shared.*;
import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.*;
import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.*;
import keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.*;
public class FuzzyFGPClassifier extends Classifier {
/**
* <p>
* FuzzyFGPClassifier is designed to allow a Fuzzy Classifier evolve by means of
* an Genetic Programming (GP). This class is a specification of the class
* {@link Classifier}.
*
* </p>
*/
//The rule base of the classifier
NodeRuleBase R;
//The class variable or output variable partitions or classes
static FuzzyPartition C;
/**
* <p>
* Class constructor using the following parameters:
* </p>
* @param pR the {@link NodeRuleBase}
* @param c the class variable {@link FuzzyPartition}
*/
public FuzzyFGPClassifier( NodeRuleBase pR, FuzzyPartition c) {
R=(NodeRuleBase)pR.clone();
C=c.clone();
}
/**
* <p>
* Copy constructor of this class, which clones its components
* </p>
* @param cb the {@link FuzzyFGPClassifier} to copy
*/
public FuzzyFGPClassifier(FuzzyFGPClassifier cb) {
R=(NodeRuleBase)cb.R.clone();
C=cb.C.clone();
}
/**
* <p>
* This method copies the given FuzzyFGPClassifier in the current object.
* </p>
* @param cb the {@link FuzzyFGPClassifier} object to be assigned to the current one
*/
public void set(FuzzyFGPClassifier cb) {
R=(NodeRuleBase)cb.R.clone();
C=cb.C.clone();
}
/**
* <p>
* This method prints information about the Rule Base useful for debugging purposes
* </p>
*/
public void debug() {
R.debug();
}
/**
* <p>
* This method prints information about the Rule Base useful for debugging purposes
* </p>
*/
public String output() {
return R.output();
}
/**
* <p>
* This method clones the current object.
* </p>
* @return a {@link Classifier} object which is a perfect copy of the current one.
*/
public Classifier clone() {
return new FuzzyFGPClassifier(this);
}
/**
* <p>
* This method evaluates the classifier for a given input example.
* </p>
* @param x array of doubles with the example to evaluate the classifier
* @return the double values array with the membership value of the example
* to each one of the classes.
*/
public double[] evaluate(double []x) {
FuzzyAlphaCut xfuzzy[] = new FuzzyAlphaCut[x.length];
for (int i=0;i<x.length;i++) xfuzzy[i]=new FuzzyAlphaCut(new FuzzyNumberTRIANG(x[i],x[i],x[i]));
R.replaceTerminals(xfuzzy);
IntDouble[] result=R.CrispEval();
double [] respuesta=new double[result.length];
for (int i=0;i<result.length;i++) {
respuesta[i]=result[i].weight;
}
return respuesta;
}
}