/* * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any contains * questions. */ package org.geogebra.ggbjdk.java.awt.geom; import static java.lang.Math.max; import org.geogebra.common.awt.GAffineTransform; import org.geogebra.common.awt.GPathIterator; import org.geogebra.common.awt.GRectangle; import org.geogebra.common.awt.GRectangle2D; import org.geogebra.common.awt.GShape; import org.geogebra.ggbjdk.sun.awt.geom.Curve; /** * The <code>CubicCurve2D</code> class defines a cubic parametric curve * segment in {@code (x,y)} coordinate space. * <p> * This class is only the abstract superclass for all objects which * store a 2D cubic curve segment. * The actual storage representation of the coordinates is left to * the subclass. * * @author Jim Graham * @since 1.2 */ public abstract class CubicCurve2D implements GShape { /** * A cubic parametric curve segment specified with * {@code double} coordinates. * @since 1.2 */ public static class Double extends CubicCurve2D { /** * The X coordinate of the start point * of the cubic curve segment. * @since 1.2 * */ public double x1; /** * The Y coordinate of the start point * of the cubic curve segment. * @since 1.2 * */ public double y1; /** * The X coordinate of the first control point * of the cubic curve segment. * @since 1.2 * */ public double ctrlx1; /** * The Y coordinate of the first control point * of the cubic curve segment. * @since 1.2 * */ public double ctrly1; /** * The X coordinate of the second control point * of the cubic curve segment. * @since 1.2 * */ public double ctrlx2; /** * The Y coordinate of the second control point * of the cubic curve segment. * @since 1.2 * */ public double ctrly2; /** * The X coordinate of the end point * of the cubic curve segment. * @since 1.2 * */ public double x2; /** * The Y coordinate of the end point * of the cubic curve segment. * @since 1.2 * */ public double y2; /** * Constructs and initializes a CubicCurve with coordinates * (0, 0, 0, 0, 0, 0, 0, 0). * @since 1.2 */ public Double() { } /** * Constructs and initializes a {@code CubicCurve2D} from * the specified {@code double} coordinates. * * @param x1 the X coordinate for the start point * of the resulting {@code CubicCurve2D} * @param y1 the Y coordinate for the start point * of the resulting {@code CubicCurve2D} * @param ctrlx1 the X coordinate for the first control point * of the resulting {@code CubicCurve2D} * @param ctrly1 the Y coordinate for the first control point * of the resulting {@code CubicCurve2D} * @param ctrlx2 the X coordinate for the second control point * of the resulting {@code CubicCurve2D} * @param ctrly2 the Y coordinate for the second control point * of the resulting {@code CubicCurve2D} * @param x2 the X coordinate for the end point * of the resulting {@code CubicCurve2D} * @param y2 the Y coordinate for the end point * of the resulting {@code CubicCurve2D} * @since 1.2 */ public Double(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2) { setCurve(x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2); } /** * {@inheritDoc} * @since 1.2 */ @Override public double getX1() { return x1; } /** * {@inheritDoc} * @since 1.2 */ @Override public double getY1() { return y1; } /** * {@inheritDoc} * @since 1.2 */ @Override public Point2D getP1() { return new Point2D.Double(x1, y1); } /** * {@inheritDoc} * @since 1.2 */ @Override public double getCtrlX1() { return ctrlx1; } /** * {@inheritDoc} * @since 1.2 */ @Override public double getCtrlY1() { return ctrly1; } /** * {@inheritDoc} * @since 1.2 */ @Override public Point2D getCtrlP1() { return new Point2D.Double(ctrlx1, ctrly1); } /** * {@inheritDoc} * @since 1.2 */ @Override public double getCtrlX2() { return ctrlx2; } /** * {@inheritDoc} * @since 1.2 */ @Override public double getCtrlY2() { return ctrly2; } /** * {@inheritDoc} * @since 1.2 */ @Override public Point2D getCtrlP2() { return new Point2D.Double(ctrlx2, ctrly2); } /** * {@inheritDoc} * @since 1.2 */ @Override public double getX2() { return x2; } /** * {@inheritDoc} * @since 1.2 */ @Override public double getY2() { return y2; } /** * {@inheritDoc} * @since 1.2 */ @Override public Point2D getP2() { return new Point2D.Double(x2, y2); } /** * {@inheritDoc} * @since 1.2 */ @Override public void setCurve(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2) { this.x1 = x1; this.y1 = y1; this.ctrlx1 = ctrlx1; this.ctrly1 = ctrly1; this.ctrlx2 = ctrlx2; this.ctrly2 = ctrly2; this.x2 = x2; this.y2 = y2; } /** * {@inheritDoc} * @since 1.2 */ @Override public GRectangle2D getBounds2D() { double left = Math.min(Math.min(x1, x2), Math.min(ctrlx1, ctrlx2)); double top = Math.min(Math.min(y1, y2), Math.min(ctrly1, ctrly2)); double right = max(max(x1, x2), max(ctrlx1, ctrlx2)); double bottom = max(max(y1, y2), max(ctrly1, ctrly2)); return new Rectangle2D.Double(left, top, right - left, bottom - top); } } /** * This is an abstract class that cannot be instantiated directly. * Type-specific implementation subclasses are available for * instantiation and provide a number of formats for storing * the information necessary to satisfy the various accessor * methods below. * * @see java.awt.geom.CubicCurve2D.Float * @see java.awt.geom.CubicCurve2D.Double * @since 1.2 */ protected CubicCurve2D() { } /** * Returns the X coordinate of the start point in double precision. * @return the X coordinate of the start point of the * {@code CubicCurve2D}. * @since 1.2 */ public abstract double getX1(); /** * Returns the Y coordinate of the start point in double precision. * @return the Y coordinate of the start point of the * {@code CubicCurve2D}. * @since 1.2 */ public abstract double getY1(); /** * Returns the start point. * @return a {@code Point2D} that is the start point of * the {@code CubicCurve2D}. * @since 1.2 */ public abstract Point2D getP1(); /** * Returns the X coordinate of the first control point in double precision. * @return the X coordinate of the first control point of the * {@code CubicCurve2D}. * @since 1.2 */ public abstract double getCtrlX1(); /** * Returns the Y coordinate of the first control point in double precision. * @return the Y coordinate of the first control point of the * {@code CubicCurve2D}. * @since 1.2 */ public abstract double getCtrlY1(); /** * Returns the first control point. * @return a {@code Point2D} that is the first control point of * the {@code CubicCurve2D}. * @since 1.2 */ public abstract Point2D getCtrlP1(); /** * Returns the X coordinate of the second control point * in double precision. * @return the X coordinate of the second control point of the * {@code CubicCurve2D}. * @since 1.2 */ public abstract double getCtrlX2(); /** * Returns the Y coordinate of the second control point * in double precision. * @return the Y coordinate of the second control point of the * {@code CubicCurve2D}. * @since 1.2 */ public abstract double getCtrlY2(); /** * Returns the second control point. * @return a {@code Point2D} that is the second control point of * the {@code CubicCurve2D}. * @since 1.2 */ public abstract Point2D getCtrlP2(); /** * Returns the X coordinate of the end point in double precision. * @return the X coordinate of the end point of the * {@code CubicCurve2D}. * @since 1.2 */ public abstract double getX2(); /** * Returns the Y coordinate of the end point in double precision. * @return the Y coordinate of the end point of the * {@code CubicCurve2D}. * @since 1.2 */ public abstract double getY2(); /** * Returns the end point. * @return a {@code Point2D} that is the end point of * the {@code CubicCurve2D}. * @since 1.2 */ public abstract Point2D getP2(); /** * Sets the location of the end points and control points of this curve * to the specified double coordinates. * * @param x1 the X coordinate used to set the start point * of this {@code CubicCurve2D} * @param y1 the Y coordinate used to set the start point * of this {@code CubicCurve2D} * @param ctrlx1 the X coordinate used to set the first control point * of this {@code CubicCurve2D} * @param ctrly1 the Y coordinate used to set the first control point * of this {@code CubicCurve2D} * @param ctrlx2 the X coordinate used to set the second control point * of this {@code CubicCurve2D} * @param ctrly2 the Y coordinate used to set the second control point * of this {@code CubicCurve2D} * @param x2 the X coordinate used to set the end point * of this {@code CubicCurve2D} * @param y2 the Y coordinate used to set the end point * of this {@code CubicCurve2D} * @since 1.2 */ public abstract void setCurve(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2); /** * Sets the location of the end points and control points of this curve * to the double coordinates at the specified offset in the specified * array. * @param coords a double array containing coordinates * @param offset the index of <code>coords</code> from which to begin * setting the end points and control points of this curve * to the coordinates contained in <code>coords</code> * @since 1.2 */ public void setCurve(double[] coords, int offset) { setCurve(coords[offset + 0], coords[offset + 1], coords[offset + 2], coords[offset + 3], coords[offset + 4], coords[offset + 5], coords[offset + 6], coords[offset + 7]); } /** * Sets the location of the end points and control points of this curve * to the specified <code>Point2D</code> coordinates. * @param p1 the first specified <code>Point2D</code> used to set the * start point of this curve * @param cp1 the second specified <code>Point2D</code> used to set the * first control point of this curve * @param cp2 the third specified <code>Point2D</code> used to set the * second control point of this curve * @param p2 the fourth specified <code>Point2D</code> used to set the * end point of this curve * @since 1.2 */ public void setCurve(Point2D p1, Point2D cp1, Point2D cp2, Point2D p2) { setCurve(p1.getX(), p1.getY(), cp1.getX(), cp1.getY(), cp2.getX(), cp2.getY(), p2.getX(), p2.getY()); } /** * Sets the location of the end points and control points of this curve * to the coordinates of the <code>Point2D</code> objects at the specified * offset in the specified array. * @param pts an array of <code>Point2D</code> objects * @param offset the index of <code>pts</code> from which to begin setting * the end points and control points of this curve to the * points contained in <code>pts</code> * @since 1.2 */ public void setCurve(Point2D[] pts, int offset) { setCurve(pts[offset + 0].getX(), pts[offset + 0].getY(), pts[offset + 1].getX(), pts[offset + 1].getY(), pts[offset + 2].getX(), pts[offset + 2].getY(), pts[offset + 3].getX(), pts[offset + 3].getY()); } /** * Sets the location of the end points and control points of this curve * to the same as those in the specified <code>CubicCurve2D</code>. * @param c the specified <code>CubicCurve2D</code> * @since 1.2 */ public void setCurve(CubicCurve2D c) { setCurve(c.getX1(), c.getY1(), c.getCtrlX1(), c.getCtrlY1(), c.getCtrlX2(), c.getCtrlY2(), c.getX2(), c.getY2()); } /** * Returns the square of the flatness of the cubic curve specified * by the indicated control points. The flatness is the maximum distance * of a control point from the line connecting the end points. * * @param x1 the X coordinate that specifies the start point * of a {@code CubicCurve2D} * @param y1 the Y coordinate that specifies the start point * of a {@code CubicCurve2D} * @param ctrlx1 the X coordinate that specifies the first control point * of a {@code CubicCurve2D} * @param ctrly1 the Y coordinate that specifies the first control point * of a {@code CubicCurve2D} * @param ctrlx2 the X coordinate that specifies the second control point * of a {@code CubicCurve2D} * @param ctrly2 the Y coordinate that specifies the second control point * of a {@code CubicCurve2D} * @param x2 the X coordinate that specifies the end point * of a {@code CubicCurve2D} * @param y2 the Y coordinate that specifies the end point * of a {@code CubicCurve2D} * @return the square of the flatness of the {@code CubicCurve2D} * represented by the specified coordinates. * @since 1.2 */ public static double getFlatnessSq(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2) { return max(Line2D.ptSegDistSq(x1, y1, x2, y2, ctrlx1, ctrly1), Line2D.ptSegDistSq(x1, y1, x2, y2, ctrlx2, ctrly2)); } /** * Returns the flatness of the cubic curve specified * by the indicated control points. The flatness is the maximum distance * of a control point from the line connecting the end points. * * @param x1 the X coordinate that specifies the start point * of a {@code CubicCurve2D} * @param y1 the Y coordinate that specifies the start point * of a {@code CubicCurve2D} * @param ctrlx1 the X coordinate that specifies the first control point * of a {@code CubicCurve2D} * @param ctrly1 the Y coordinate that specifies the first control point * of a {@code CubicCurve2D} * @param ctrlx2 the X coordinate that specifies the second control point * of a {@code CubicCurve2D} * @param ctrly2 the Y coordinate that specifies the second control point * of a {@code CubicCurve2D} * @param x2 the X coordinate that specifies the end point * of a {@code CubicCurve2D} * @param y2 the Y coordinate that specifies the end point * of a {@code CubicCurve2D} * @return the flatness of the {@code CubicCurve2D} * represented by the specified coordinates. * @since 1.2 */ public static double getFlatness(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2) { return Math.sqrt(getFlatnessSq(x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2)); } /** * Returns the square of the flatness of the cubic curve specified * by the control points stored in the indicated array at the * indicated index. The flatness is the maximum distance * of a control point from the line connecting the end points. * @param coords an array containing coordinates * @param offset the index of <code>coords</code> from which to begin * getting the end points and control points of the curve * @return the square of the flatness of the <code>CubicCurve2D</code> * specified by the coordinates in <code>coords</code> at * the specified offset. * @since 1.2 */ public static double getFlatnessSq(double coords[], int offset) { return getFlatnessSq(coords[offset + 0], coords[offset + 1], coords[offset + 2], coords[offset + 3], coords[offset + 4], coords[offset + 5], coords[offset + 6], coords[offset + 7]); } /** * Returns the flatness of the cubic curve specified * by the control points stored in the indicated array at the * indicated index. The flatness is the maximum distance * of a control point from the line connecting the end points. * @param coords an array containing coordinates * @param offset the index of <code>coords</code> from which to begin * getting the end points and control points of the curve * @return the flatness of the <code>CubicCurve2D</code> * specified by the coordinates in <code>coords</code> at * the specified offset. * @since 1.2 */ public static double getFlatness(double coords[], int offset) { return getFlatness(coords[offset + 0], coords[offset + 1], coords[offset + 2], coords[offset + 3], coords[offset + 4], coords[offset + 5], coords[offset + 6], coords[offset + 7]); } /** * Returns the square of the flatness of this curve. The flatness is the * maximum distance of a control point from the line connecting the * end points. * @return the square of the flatness of this curve. * @since 1.2 */ public double getFlatnessSq() { return getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(), getCtrlX2(), getCtrlY2(), getX2(), getY2()); } /** * Returns the flatness of this curve. The flatness is the * maximum distance of a control point from the line connecting the * end points. * @return the flatness of this curve. * @since 1.2 */ public double getFlatness() { return getFlatness(getX1(), getY1(), getCtrlX1(), getCtrlY1(), getCtrlX2(), getCtrlY2(), getX2(), getY2()); } /** * Subdivides this cubic curve and stores the resulting two * subdivided curves into the left and right curve parameters. * Either or both of the left and right objects may be the same * as this object or null. * @param left the cubic curve object for storing for the left or * first half of the subdivided curve * @param right the cubic curve object for storing for the right or * second half of the subdivided curve * @since 1.2 */ public void subdivide(CubicCurve2D left, CubicCurve2D right) { subdivide(this, left, right); } /** * Subdivides the cubic curve specified by the <code>src</code> parameter * and stores the resulting two subdivided curves into the * <code>left</code> and <code>right</code> curve parameters. * Either or both of the <code>left</code> and <code>right</code> objects * may be the same as the <code>src</code> object or <code>null</code>. * @param src the cubic curve to be subdivided * @param left the cubic curve object for storing the left or * first half of the subdivided curve * @param right the cubic curve object for storing the right or * second half of the subdivided curve * @since 1.2 */ public static void subdivide(CubicCurve2D src, CubicCurve2D left, CubicCurve2D right) { double x1 = src.getX1(); double y1 = src.getY1(); double ctrlx1 = src.getCtrlX1(); double ctrly1 = src.getCtrlY1(); double ctrlx2 = src.getCtrlX2(); double ctrly2 = src.getCtrlY2(); double x2 = src.getX2(); double y2 = src.getY2(); double centerx = (ctrlx1 + ctrlx2) / 2.0; double centery = (ctrly1 + ctrly2) / 2.0; ctrlx1 = (x1 + ctrlx1) / 2.0; ctrly1 = (y1 + ctrly1) / 2.0; ctrlx2 = (x2 + ctrlx2) / 2.0; ctrly2 = (y2 + ctrly2) / 2.0; double ctrlx12 = (ctrlx1 + centerx) / 2.0; double ctrly12 = (ctrly1 + centery) / 2.0; double ctrlx21 = (ctrlx2 + centerx) / 2.0; double ctrly21 = (ctrly2 + centery) / 2.0; centerx = (ctrlx12 + ctrlx21) / 2.0; centery = (ctrly12 + ctrly21) / 2.0; if (left != null) { left.setCurve(x1, y1, ctrlx1, ctrly1, ctrlx12, ctrly12, centerx, centery); } if (right != null) { right.setCurve(centerx, centery, ctrlx21, ctrly21, ctrlx2, ctrly2, x2, y2); } } /** * Subdivides the cubic curve specified by the coordinates * stored in the <code>src</code> array at indices <code>srcoff</code> * through (<code>srcoff</code> + 7) and stores the * resulting two subdivided curves into the two result arrays at the * corresponding indices. * Either or both of the <code>left</code> and <code>right</code> * arrays may be <code>null</code> or a reference to the same array * as the <code>src</code> array. * Note that the last point in the first subdivided curve is the * same as the first point in the second subdivided curve. Thus, * it is possible to pass the same array for <code>left</code> * and <code>right</code> and to use offsets, such as <code>rightoff</code> * equals (<code>leftoff</code> + 6), in order * to avoid allocating extra storage for this common point. * @param src the array holding the coordinates for the source curve * @param srcoff the offset into the array of the beginning of the * the 6 source coordinates * @param left the array for storing the coordinates for the first * half of the subdivided curve * @param leftoff the offset into the array of the beginning of the * the 6 left coordinates * @param right the array for storing the coordinates for the second * half of the subdivided curve * @param rightoff the offset into the array of the beginning of the * the 6 right coordinates * @since 1.2 */ public static void subdivide(double src[], int srcoff, double left[], int leftoff, double right[], int rightoff) { double x1 = src[srcoff + 0]; double y1 = src[srcoff + 1]; double ctrlx1 = src[srcoff + 2]; double ctrly1 = src[srcoff + 3]; double ctrlx2 = src[srcoff + 4]; double ctrly2 = src[srcoff + 5]; double x2 = src[srcoff + 6]; double y2 = src[srcoff + 7]; if (left != null) { left[leftoff + 0] = x1; left[leftoff + 1] = y1; } if (right != null) { right[rightoff + 6] = x2; right[rightoff + 7] = y2; } x1 = (x1 + ctrlx1) / 2.0; y1 = (y1 + ctrly1) / 2.0; x2 = (x2 + ctrlx2) / 2.0; y2 = (y2 + ctrly2) / 2.0; double centerx = (ctrlx1 + ctrlx2) / 2.0; double centery = (ctrly1 + ctrly2) / 2.0; ctrlx1 = (x1 + centerx) / 2.0; ctrly1 = (y1 + centery) / 2.0; ctrlx2 = (x2 + centerx) / 2.0; ctrly2 = (y2 + centery) / 2.0; centerx = (ctrlx1 + ctrlx2) / 2.0; centery = (ctrly1 + ctrly2) / 2.0; if (left != null) { left[leftoff + 2] = x1; left[leftoff + 3] = y1; left[leftoff + 4] = ctrlx1; left[leftoff + 5] = ctrly1; left[leftoff + 6] = centerx; left[leftoff + 7] = centery; } if (right != null) { right[rightoff + 0] = centerx; right[rightoff + 1] = centery; right[rightoff + 2] = ctrlx2; right[rightoff + 3] = ctrly2; right[rightoff + 4] = x2; right[rightoff + 5] = y2; } } /** * {@inheritDoc} * @since 1.2 */ @Override public boolean contains(double x, double y) { if (!(x * 0.0 + y * 0.0 == 0.0)) { /* Either x or y was infinite or NaN. * A NaN always produces a negative response to any test * and Infinity values cannot be "inside" any path so * they should return false as well. */ return false; } // We count the "Y" crossings to determine if the point is // inside the curve bounded by its closing line. double x1 = getX1(); double y1 = getY1(); double x2 = getX2(); double y2 = getY2(); int crossings = (Curve.pointCrossingsForLine(x, y, x1, y1, x2, y2) + Curve.pointCrossingsForCubic(x, y, x1, y1, getCtrlX1(), getCtrlY1(), getCtrlX2(), getCtrlY2(), x2, y2, 0)); return ((crossings & 1) == 1); } /** * {@inheritDoc} * @since 1.2 */ public boolean contains(Point2D p) { return contains(p.getX(), p.getY()); } /** * {@inheritDoc} * @since 1.2 */ @Override public boolean intersects(double x, double y, double w, double h) { // Trivially reject non-existant rectangles if (w <= 0 || h <= 0) { return false; } int numCrossings = rectCrossings(x, y, w, h); // the intended return value is // numCrossings != 0 || numCrossings == Curve.RECT_INTERSECTS // but if (numCrossings != 0) numCrossings == INTERSECTS won't matter // and if !(numCrossings != 0) then numCrossings == 0, so // numCrossings != RECT_INTERSECT return numCrossings != 0; } /** * {@inheritDoc} * @since 1.2 */ public boolean intersects(Rectangle2D r) { return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } /** * {@inheritDoc} * @since 1.2 */ public boolean contains(double x, double y, double w, double h) { if (w <= 0 || h <= 0) { return false; } int numCrossings = rectCrossings(x, y, w, h); return !(numCrossings == 0 || numCrossings == Curve.RECT_INTERSECTS); } private int rectCrossings(double x, double y, double w, double h) { int crossings = 0; if (!(getX1() == getX2() && getY1() == getY2())) { crossings = Curve.rectCrossingsForLine(crossings, x, y, x+w, y+h, getX1(), getY1(), getX2(), getY2()); if (crossings == Curve.RECT_INTERSECTS) { return crossings; } } // we call this with the curve's direction reversed, because we wanted // to call rectCrossingsForLine first, because it's cheaper. return Curve.rectCrossingsForCubic(crossings, x, y, x+w, y+h, getX2(), getY2(), getCtrlX2(), getCtrlY2(), getCtrlX1(), getCtrlY1(), getX1(), getY1(), 0); } /** * {@inheritDoc} * @since 1.2 */ public boolean contains(Rectangle2D r) { return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } /** * {@inheritDoc} * @since 1.2 */ @Override public GRectangle getBounds() { return getBounds2D().getBounds(); } /** * Returns an iteration object that defines the boundary of the * shape. * The iterator for this class is not multi-threaded safe, * which means that this <code>CubicCurve2D</code> class does not * guarantee that modifications to the geometry of this * <code>CubicCurve2D</code> object do not affect any iterations of * that geometry that are already in process. * @param at an optional <code>AffineTransform</code> to be applied to the * coordinates as they are returned in the iteration, or <code>null</code> * if untransformed coordinates are desired * @return the <code>PathIterator</code> object that returns the * geometry of the outline of this <code>CubicCurve2D</code>, one * segment at a time. * @since 1.2 */ @Override public GPathIterator getPathIterator(GAffineTransform at) { return new CubicIterator(this, at); } /** * Return an iteration object that defines the boundary of the * flattened shape. * The iterator for this class is not multi-threaded safe, * which means that this <code>CubicCurve2D</code> class does not * guarantee that modifications to the geometry of this * <code>CubicCurve2D</code> object do not affect any iterations of * that geometry that are already in process. * @param at an optional <code>AffineTransform</code> to be applied to the * coordinates as they are returned in the iteration, or <code>null</code> * if untransformed coordinates are desired * @param flatness the maximum amount that the control points * for a given curve can vary from colinear before a subdivided * curve is replaced by a straight line connecting the end points * @return the <code>PathIterator</code> object that returns the * geometry of the outline of this <code>CubicCurve2D</code>, * one segment at a time. * @since 1.2 */ public GPathIterator getPathIterator(GAffineTransform at, double flatness) { return new FlatteningPathIterator(getPathIterator(at), flatness); } @Override public boolean intersects(int i, int j, int k, int l) { return intersects((double)i, (double)j, (double)k, (double)l); } @Override public boolean contains(int x, int y) { return contains((double)x, (double)y); } @Override public boolean contains(GRectangle2D r) { return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } @Override public boolean intersects(GRectangle2D r) { return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } }