/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.stat.correlation; import org.apache.commons.math3.exception.DimensionMismatchException; import org.apache.commons.math3.linear.BlockRealMatrix; import org.apache.commons.math3.linear.MatrixUtils; import org.apache.commons.math3.linear.RealMatrix; import org.apache.commons.math3.util.FastMath; import org.apache.commons.math3.util.Pair; import java.util.Arrays; import java.util.Comparator; /** * Implementation of Kendall's Tau-b rank correlation</a>. * <p> * A pair of observations (x<sub>1</sub>, y<sub>1</sub>) and * (x<sub>2</sub>, y<sub>2</sub>) are considered <i>concordant</i> if * x<sub>1</sub> < x<sub>2</sub> and y<sub>1</sub> < y<sub>2</sub> * or x<sub>2</sub> < x<sub>1</sub> and y<sub>2</sub> < y<sub>1</sub>. * The pair is <i>discordant</i> if x<sub>1</sub> < x<sub>2</sub> and * y<sub>2</sub> < y<sub>1</sub> or x<sub>2</sub> < x<sub>1</sub> and * y<sub>1</sub> < y<sub>2</sub>. If either x<sub>1</sub> = x<sub>2</sub> * or y<sub>1</sub> = y<sub>2</sub>, the pair is neither concordant nor * discordant. * <p> * Kendall's Tau-b is defined as: * <pre> * tau<sub>b</sub> = (n<sub>c</sub> - n<sub>d</sub>) / sqrt((n<sub>0</sub> - n<sub>1</sub>) * (n<sub>0</sub> - n<sub>2</sub>)) * </pre> * <p> * where: * <ul> * <li>n<sub>0</sub> = n * (n - 1) / 2</li> * <li>n<sub>c</sub> = Number of concordant pairs</li> * <li>n<sub>d</sub> = Number of discordant pairs</li> * <li>n<sub>1</sub> = sum of t<sub>i</sub> * (t<sub>i</sub> - 1) / 2 for all i</li> * <li>n<sub>2</sub> = sum of u<sub>j</sub> * (u<sub>j</sub> - 1) / 2 for all j</li> * <li>t<sub>i</sub> = Number of tied values in the i<sup>th</sup> group of ties in x</li> * <li>u<sub>j</sub> = Number of tied values in the j<sup>th</sup> group of ties in y</li> * </ul> * <p> * This implementation uses the O(n log n) algorithm described in * William R. Knight's 1966 paper "A Computer Method for Calculating * Kendall's Tau with Ungrouped Data" in the Journal of the American * Statistical Association. * * @see <a href="http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient"> * Kendall tau rank correlation coefficient (Wikipedia)</a> * @see <a href="http://www.jstor.org/stable/2282833">A Computer * Method for Calculating Kendall's Tau with Ungrouped Data</a> * * @since 3.3 */ public class KendallsCorrelation { /** correlation matrix */ private final RealMatrix correlationMatrix; /** * Create a KendallsCorrelation instance without data. */ public KendallsCorrelation() { correlationMatrix = null; } /** * Create a KendallsCorrelation from a rectangular array * whose columns represent values of variables to be correlated. * * @param data rectangular array with columns representing variables * @throws IllegalArgumentException if the input data array is not * rectangular with at least two rows and two columns. */ public KendallsCorrelation(double[][] data) { this(MatrixUtils.createRealMatrix(data)); } /** * Create a KendallsCorrelation from a RealMatrix whose columns * represent variables to be correlated. * * @param matrix matrix with columns representing variables to correlate */ public KendallsCorrelation(RealMatrix matrix) { correlationMatrix = computeCorrelationMatrix(matrix); } /** * Returns the correlation matrix. * * @return correlation matrix */ public RealMatrix getCorrelationMatrix() { return correlationMatrix; } /** * Computes the Kendall's Tau rank correlation matrix for the columns of * the input matrix. * * @param matrix matrix with columns representing variables to correlate * @return correlation matrix */ public RealMatrix computeCorrelationMatrix(final RealMatrix matrix) { int nVars = matrix.getColumnDimension(); RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars); for (int i = 0; i < nVars; i++) { for (int j = 0; j < i; j++) { double corr = correlation(matrix.getColumn(i), matrix.getColumn(j)); outMatrix.setEntry(i, j, corr); outMatrix.setEntry(j, i, corr); } outMatrix.setEntry(i, i, 1d); } return outMatrix; } /** * Computes the Kendall's Tau rank correlation matrix for the columns of * the input rectangular array. The columns of the array represent values * of variables to be correlated. * * @param matrix matrix with columns representing variables to correlate * @return correlation matrix */ public RealMatrix computeCorrelationMatrix(final double[][] matrix) { return computeCorrelationMatrix(new BlockRealMatrix(matrix)); } /** * Computes the Kendall's Tau rank correlation coefficient between the two arrays. * * @param xArray first data array * @param yArray second data array * @return Returns Kendall's Tau rank correlation coefficient for the two arrays * @throws DimensionMismatchException if the arrays lengths do not match */ public double correlation(final double[] xArray, final double[] yArray) throws DimensionMismatchException { if (xArray.length != yArray.length) { throw new DimensionMismatchException(xArray.length, yArray.length); } final int n = xArray.length; final long numPairs = sum(n - 1); @SuppressWarnings("unchecked") Pair<Double, Double>[] pairs = new Pair[n]; for (int i = 0; i < n; i++) { pairs[i] = new Pair<Double, Double>(xArray[i], yArray[i]); } Arrays.sort(pairs, new Comparator<Pair<Double, Double>>() { /** {@inheritDoc} */ public int compare(Pair<Double, Double> pair1, Pair<Double, Double> pair2) { int compareFirst = pair1.getFirst().compareTo(pair2.getFirst()); return compareFirst != 0 ? compareFirst : pair1.getSecond().compareTo(pair2.getSecond()); } }); long tiedXPairs = 0; long tiedXYPairs = 0; long consecutiveXTies = 1; long consecutiveXYTies = 1; Pair<Double, Double> prev = pairs[0]; for (int i = 1; i < n; i++) { final Pair<Double, Double> curr = pairs[i]; if (curr.getFirst().equals(prev.getFirst())) { consecutiveXTies++; if (curr.getSecond().equals(prev.getSecond())) { consecutiveXYTies++; } else { tiedXYPairs += sum(consecutiveXYTies - 1); consecutiveXYTies = 1; } } else { tiedXPairs += sum(consecutiveXTies - 1); consecutiveXTies = 1; tiedXYPairs += sum(consecutiveXYTies - 1); consecutiveXYTies = 1; } prev = curr; } tiedXPairs += sum(consecutiveXTies - 1); tiedXYPairs += sum(consecutiveXYTies - 1); long swaps = 0; @SuppressWarnings("unchecked") Pair<Double, Double>[] pairsDestination = new Pair[n]; for (int segmentSize = 1; segmentSize < n; segmentSize <<= 1) { for (int offset = 0; offset < n; offset += 2 * segmentSize) { int i = offset; final int iEnd = Math.min(i + segmentSize, n); int j = iEnd; final int jEnd = Math.min(j + segmentSize, n); int copyLocation = offset; while (i < iEnd || j < jEnd) { if (i < iEnd) { if (j < jEnd) { if (pairs[i].getSecond().compareTo(pairs[j].getSecond()) <= 0) { pairsDestination[copyLocation] = pairs[i]; i++; } else { pairsDestination[copyLocation] = pairs[j]; j++; swaps += iEnd - i; } } else { pairsDestination[copyLocation] = pairs[i]; i++; } } else { pairsDestination[copyLocation] = pairs[j]; j++; } copyLocation++; } } final Pair<Double, Double>[] pairsTemp = pairs; pairs = pairsDestination; pairsDestination = pairsTemp; } long tiedYPairs = 0; long consecutiveYTies = 1; prev = pairs[0]; for (int i = 1; i < n; i++) { final Pair<Double, Double> curr = pairs[i]; if (curr.getSecond().equals(prev.getSecond())) { consecutiveYTies++; } else { tiedYPairs += sum(consecutiveYTies - 1); consecutiveYTies = 1; } prev = curr; } tiedYPairs += sum(consecutiveYTies - 1); final long concordantMinusDiscordant = numPairs - tiedXPairs - tiedYPairs + tiedXYPairs - 2 * swaps; final double nonTiedPairsMultiplied = (numPairs - tiedXPairs) * (double) (numPairs - tiedYPairs); return concordantMinusDiscordant / Math.sqrt(nonTiedPairsMultiplied); } /** * Returns the sum of the number from 1 .. n according to Gauss' summation formula: * \[ \sum\limits_{k=1}^n k = \frac{n(n + 1)}{2} \] * * @param n the summation end * @return the sum of the number from 1 to n */ private static long sum(long n) { return n * (n + 1) / 2l; } }