/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.distribution; import org.apache.commons.math3.exception.NotStrictlyPositiveException; import org.apache.commons.math3.exception.NumberIsTooLargeException; import org.apache.commons.math3.exception.util.LocalizedFormats; import org.apache.commons.math3.random.RandomGenerator; import org.apache.commons.math3.random.Well19937c; /** * Implementation of the Pareto distribution. * * <p> * <strong>Parameters:</strong> * The probability distribution function of {@code X} is given by (for {@code x >= k}): * <pre> * ? * k^? / x^(? + 1) * </pre> * <p> * <ul> * <li>{@code k} is the <em>scale</em> parameter: this is the minimum possible value of {@code X},</li> * <li>{@code ?} is the <em>shape</em> parameter: this is the Pareto index</li> * </ul> * * @see <a href="http://en.wikipedia.org/wiki/Pareto_distribution"> * Pareto distribution (Wikipedia)</a> * @see <a href="http://mathworld.wolfram.com/ParetoDistribution.html"> * Pareto distribution (MathWorld)</a> * * @since 3.3 */ public class ParetoDistribution extends AbstractRealDistribution { /** Default inverse cumulative probability accuracy. */ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; /** Serializable version identifier. */ private static final long serialVersionUID = 20130424; /** The scale parameter of this distribution. */ private final double scale; /** The shape parameter of this distribution. */ private final double shape; /** Inverse cumulative probability accuracy. */ private final double solverAbsoluteAccuracy; /** * Create a Pareto distribution with a scale of {@code 1} and a shape of {@code 1}. */ public ParetoDistribution() { this(1, 1); } /** * Create a Pareto distribution using the specified scale and shape. * <p> * <b>Note:</b> this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param scale the scale parameter of this distribution * @param shape the shape parameter of this distribution * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}. */ public ParetoDistribution(double scale, double shape) throws NotStrictlyPositiveException { this(scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create a Pareto distribution using the specified scale, shape and * inverse cumulative distribution accuracy. * <p> * <b>Note:</b> this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param scale the scale parameter of this distribution * @param shape the shape parameter of this distribution * @param inverseCumAccuracy Inverse cumulative probability accuracy. * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}. */ public ParetoDistribution(double scale, double shape, double inverseCumAccuracy) throws NotStrictlyPositiveException { this(new Well19937c(), scale, shape, inverseCumAccuracy); } /** * Creates a Pareto distribution. * * @param rng Random number generator. * @param scale Scale parameter of this distribution. * @param shape Shape parameter of this distribution. * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}. */ public ParetoDistribution(RandomGenerator rng, double scale, double shape) throws NotStrictlyPositiveException { this(rng, scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates a Pareto distribution. * * @param rng Random number generator. * @param scale Scale parameter of this distribution. * @param shape Shape parameter of this distribution. * @param inverseCumAccuracy Inverse cumulative probability accuracy. * @throws NotStrictlyPositiveException if {@code scale <= 0} or {@code shape <= 0}. */ public ParetoDistribution(RandomGenerator rng, double scale, double shape, double inverseCumAccuracy) throws NotStrictlyPositiveException { super(rng); if (scale <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.SCALE, scale); } if (shape <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, shape); } this.scale = scale; this.shape = shape; this.solverAbsoluteAccuracy = inverseCumAccuracy; } /** * Returns the scale parameter of this distribution. * * @return the scale parameter */ public double getScale() { return scale; } /** * Returns the shape parameter of this distribution. * * @return the shape parameter */ public double getShape() { return shape; } /** * {@inheritDoc} * <p> * For scale {@code k}, and shape {@code ?} of this distribution, the PDF * is given by * <ul> * <li>{@code 0} if {@code x < k},</li> * <li>{@code ? * k^? / x^(? + 1)} otherwise.</li> * </ul> */ public double density(double x) { if (x < scale) { return 0; } return Math.pow(scale, shape) / Math.pow(x, shape + 1) * shape; } /** {@inheritDoc} * * See documentation of {@link #density(double)} for computation details. */ @Override public double logDensity(double x) { if (x < scale) { return Double.NEGATIVE_INFINITY; } return Math.log(scale) * shape - Math.log(x) * (shape + 1) + Math.log(shape); } /** * {@inheritDoc} * <p> * For scale {@code k}, and shape {@code ?} of this distribution, the CDF is given by * <ul> * <li>{@code 0} if {@code x < k},</li> * <li>{@code 1 - (k / x)^?} otherwise.</li> * </ul> */ public double cumulativeProbability(double x) { if (x <= scale) { return 0; } return 1 - Math.pow(scale / x, shape); } /** * {@inheritDoc} * * @deprecated See {@link RealDistribution#cumulativeProbability(double,double)} */ @Override @Deprecated public double cumulativeProbability(double x0, double x1) throws NumberIsTooLargeException { return probability(x0, x1); } /** {@inheritDoc} */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * <p> * For scale {@code k} and shape {@code ?}, the mean is given by * <ul> * <li>{@code ?} if {@code ? <= 1},</li> * <li>{@code ? * k / (? - 1)} otherwise.</li> * </ul> */ public double getNumericalMean() { if (shape <= 1) { return Double.POSITIVE_INFINITY; } return shape * scale / (shape - 1); } /** * {@inheritDoc} * <p> * For scale {@code k} and shape {@code ?}, the variance is given by * <ul> * <li>{@code ?} if {@code 1 < ? <= 2},</li> * <li>{@code k^2 * ? / ((? - 1)^2 * (? - 2))} otherwise.</li> * </ul> */ public double getNumericalVariance() { if (shape <= 2) { return Double.POSITIVE_INFINITY; } double s = shape - 1; return scale * scale * shape / (s * s) / (shape - 2); } /** * {@inheritDoc} * <p> * The lower bound of the support is equal to the scale parameter {@code k}. * * @return lower bound of the support */ public double getSupportLowerBound() { return scale; } /** * {@inheritDoc} * <p> * The upper bound of the support is always positive infinity no matter the parameters. * * @return upper bound of the support (always {@code Double.POSITIVE_INFINITY}) */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return true; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return false; } /** * {@inheritDoc} * <p> * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } /** {@inheritDoc} */ @Override public double sample() { final double n = random.nextDouble(); return scale / Math.pow(n, 1 / shape); } }