// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Ported to Java from Mozilla's version of V8-dtoa by Hannes Wallnoefer. // The original revision was 67d1049b0bf9 from the mozilla-central tree. package org.mozilla.javascript.v8dtoa; public class FastDtoa { // FastDtoa will produce at most kFastDtoaMaximalLength digits. static final int kFastDtoaMaximalLength = 17; // The minimal and maximal target exponent define the range of w's binary // exponent, where 'w' is the result of multiplying the input by a cached power // of ten. // // A different range might be chosen on a different platform, to optimize digit // generation, but a smaller range requires more powers of ten to be cached. static final int minimal_target_exponent = -60; static final int maximal_target_exponent = -32; // Adjusts the last digit of the generated number, and screens out generated // solutions that may be inaccurate. A solution may be inaccurate if it is // outside the safe interval, or if we ctannot prove that it is closer to the // input than a neighboring representation of the same length. // // Input: * buffer containing the digits of too_high / 10^kappa // * distance_too_high_w == (too_high - w).f() * unit // * unsafe_interval == (too_high - too_low).f() * unit // * rest = (too_high - buffer * 10^kappa).f() * unit // * ten_kappa = 10^kappa * unit // * unit = the common multiplier // Output: returns true if the buffer is guaranteed to contain the closest // representable number to the input. // Modifies the generated digits in the buffer to approach (round towards) w. static boolean roundWeed(FastDtoaBuilder buffer, long distance_too_high_w, long unsafe_interval, long rest, long ten_kappa, long unit) { long small_distance = distance_too_high_w - unit; long big_distance = distance_too_high_w + unit; // Let w_low = too_high - big_distance, and // w_high = too_high - small_distance. // Note: w_low < w < w_high // // The real w (* unit) must lie somewhere inside the interval // ]w_low; w_low[ (often written as "(w_low; w_low)") // Basically the buffer currently contains a number in the unsafe interval // ]too_low; too_high[ with too_low < w < too_high // // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // ^v 1 unit ^ ^ ^ ^ // boundary_high --------------------- . . . . // ^v 1 unit . . . . // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . . // . . ^ . . // . big_distance . . . // . . . . rest // small_distance . . . . // v . . . . // w_high - - - - - - - - - - - - - - - - - - . . . . // ^v 1 unit . . . . // w ---------------------------------------- . . . . // ^v 1 unit v . . . // w_low - - - - - - - - - - - - - - - - - - - - - . . . // . . v // buffer --------------------------------------------------+-------+-------- // . . // safe_interval . // v . // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . // ^v 1 unit . // boundary_low ------------------------- unsafe_interval // ^v 1 unit v // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // // // Note that the value of buffer could lie anywhere inside the range too_low // to too_high. // // boundary_low, boundary_high and w are approximations of the real boundaries // and v (the input number). They are guaranteed to be precise up to one unit. // In fact the error is guaranteed to be strictly less than one unit. // // Anything that lies outside the unsafe interval is guaranteed not to round // to v when read again. // Anything that lies inside the safe interval is guaranteed to round to v // when read again. // If the number inside the buffer lies inside the unsafe interval but not // inside the safe interval then we simply do not know and bail out (returning // false). // // Similarly we have to take into account the imprecision of 'w' when rounding // the buffer. If we have two potential representations we need to make sure // that the chosen one is closer to w_low and w_high since v can be anywhere // between them. // // By generating the digits of too_high we got the largest (closest to // too_high) buffer that is still in the unsafe interval. In the case where // w_high < buffer < too_high we try to decrement the buffer. // This way the buffer approaches (rounds towards) w. // There are 3 conditions that stop the decrementation process: // 1) the buffer is already below w_high // 2) decrementing the buffer would make it leave the unsafe interval // 3) decrementing the buffer would yield a number below w_high and farther // away than the current number. In other words: // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high // Instead of using the buffer directly we use its distance to too_high. // Conceptually rest ~= too_high - buffer while (rest < small_distance && // Negated condition 1 unsafe_interval - rest >= ten_kappa && // Negated condition 2 (rest + ten_kappa < small_distance || // buffer{-1} > w_high small_distance - rest >= rest + ten_kappa - small_distance)) { buffer.decreaseLast(); rest += ten_kappa; } // We have approached w+ as much as possible. We now test if approaching w- // would require changing the buffer. If yes, then we have two possible // representations close to w, but we cannot decide which one is closer. if (rest < big_distance && unsafe_interval - rest >= ten_kappa && (rest + ten_kappa < big_distance || big_distance - rest > rest + ten_kappa - big_distance)) { return false; } // Weeding test. // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] // Since too_low = too_high - unsafe_interval this is equivalent to // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] // Conceptually we have: rest ~= too_high - buffer return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); } static final int kTen4 = 10000; static final int kTen5 = 100000; static final int kTen6 = 1000000; static final int kTen7 = 10000000; static final int kTen8 = 100000000; static final int kTen9 = 1000000000; // Returns the biggest power of ten that is less than or equal than the given // number. We furthermore receive the maximum number of bits 'number' has. // If number_bits == 0 then 0^-1 is returned // The number of bits must be <= 32. // Precondition: (1 << number_bits) <= number < (1 << (number_bits + 1)). static long biggestPowerTen(int number, int number_bits) { int power, exponent; switch (number_bits) { case 32: case 31: case 30: if (kTen9 <= number) { power = kTen9; exponent = 9; break; } // else fallthrough case 29: case 28: case 27: if (kTen8 <= number) { power = kTen8; exponent = 8; break; } // else fallthrough case 26: case 25: case 24: if (kTen7 <= number) { power = kTen7; exponent = 7; break; } // else fallthrough case 23: case 22: case 21: case 20: if (kTen6 <= number) { power = kTen6; exponent = 6; break; } // else fallthrough case 19: case 18: case 17: if (kTen5 <= number) { power = kTen5; exponent = 5; break; } // else fallthrough case 16: case 15: case 14: if (kTen4 <= number) { power = kTen4; exponent = 4; break; } // else fallthrough case 13: case 12: case 11: case 10: if (1000 <= number) { power = 1000; exponent = 3; break; } // else fallthrough case 9: case 8: case 7: if (100 <= number) { power = 100; exponent = 2; break; } // else fallthrough case 6: case 5: case 4: if (10 <= number) { power = 10; exponent = 1; break; } // else fallthrough case 3: case 2: case 1: if (1 <= number) { power = 1; exponent = 0; break; } // else fallthrough case 0: power = 0; exponent = -1; break; default: // Following assignments are here to silence compiler warnings. power = 0; exponent = 0; // UNREACHABLE(); } return ((long)power << 32) | (0xffffffffL & exponent); } private static boolean uint64_lte(long a, long b) { // less-or-equal for unsigned int64 in java-style... return (a == b) || ((a < b) ^ (a < 0) ^ (b < 0)); } // Generates the digits of input number w. // w is a floating-point number (DiyFp), consisting of a significand and an // exponent. Its exponent is bounded by minimal_target_exponent and // maximal_target_exponent. // Hence -60 <= w.e() <= -32. // // Returns false if it fails, in which case the generated digits in the buffer // should not be used. // Preconditions: // * low, w and high are correct up to 1 ulp (unit in the last place). That // is, their error must be less that a unit of their last digits. // * low.e() == w.e() == high.e() // * low < w < high, and taking into account their error: low~ <= high~ // * minimal_target_exponent <= w.e() <= maximal_target_exponent // Postconditions: returns false if procedure fails. // otherwise: // * buffer is not null-terminated, but len contains the number of digits. // * buffer contains the shortest possible decimal digit-sequence // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the // correct values of low and high (without their error). // * if more than one decimal representation gives the minimal number of // decimal digits then the one closest to W (where W is the correct value // of w) is chosen. // Remark: this procedure takes into account the imprecision of its input // numbers. If the precision is not enough to guarantee all the postconditions // then false is returned. This usually happens rarely (~0.5%). // // Say, for the sake of example, that // w.e() == -48, and w.f() == 0x1234567890abcdef // w's value can be computed by w.f() * 2^w.e() // We can obtain w's integral digits by simply shifting w.f() by -w.e(). // -> w's integral part is 0x1234 // w's fractional part is therefore 0x567890abcdef. // Printing w's integral part is easy (simply print 0x1234 in decimal). // In order to print its fraction we repeatedly multiply the fraction by 10 and // get each digit. Example the first digit after the point would be computed by // (0x567890abcdef * 10) >> 48. -> 3 // The whole thing becomes slightly more complicated because we want to stop // once we have enough digits. That is, once the digits inside the buffer // represent 'w' we can stop. Everything inside the interval low - high // represents w. However we have to pay attention to low, high and w's // imprecision. static boolean digitGen(DiyFp low, DiyFp w, DiyFp high, FastDtoaBuilder buffer, int mk) { assert(low.e() == w.e() && w.e() == high.e()); assert uint64_lte(low.f() + 1, high.f() - 1); assert(minimal_target_exponent <= w.e() && w.e() <= maximal_target_exponent); // low, w and high are imprecise, but by less than one ulp (unit in the last // place). // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that // the new numbers are outside of the interval we want the final // representation to lie in. // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield // numbers that are certain to lie in the interval. We will use this fact // later on. // We will now start by generating the digits within the uncertain // interval. Later we will weed out representations that lie outside the safe // interval and thus _might_ lie outside the correct interval. long unit = 1; DiyFp too_low = new DiyFp(low.f() - unit, low.e()); DiyFp too_high = new DiyFp(high.f() + unit, high.e()); // too_low and too_high are guaranteed to lie outside the interval we want the // generated number in. DiyFp unsafe_interval = DiyFp.minus(too_high, too_low); // We now cut the input number into two parts: the integral digits and the // fractionals. We will not write any decimal separator though, but adapt // kappa instead. // Reminder: we are currently computing the digits (stored inside the buffer) // such that: too_low < buffer * 10^kappa < too_high // We use too_high for the digit_generation and stop as soon as possible. // If we stop early we effectively round down. DiyFp one = new DiyFp(1l << -w.e(), w.e()); // Division by one is a shift. int integrals = (int)((too_high.f() >>> -one.e()) & 0xffffffffL); // Modulo by one is an and. long fractionals = too_high.f() & (one.f() - 1); long result = biggestPowerTen(integrals, DiyFp.kSignificandSize - (-one.e())); int divider = (int) ((result >>> 32) & 0xffffffffL); int divider_exponent = (int) (result & 0xffffffffL); int kappa = divider_exponent + 1; // Loop invariant: buffer = too_high / 10^kappa (integer division) // The invariant holds for the first iteration: kappa has been initialized // with the divider exponent + 1. And the divider is the biggest power of ten // that is smaller than integrals. while (kappa > 0) { int digit = integrals / divider; buffer.append((char) ('0' + digit)); integrals %= divider; kappa--; // Note that kappa now equals the exponent of the divider and that the // invariant thus holds again. long rest = ((long)integrals << -one.e()) + fractionals; // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) // Reminder: unsafe_interval.e() == one.e() if (rest < unsafe_interval.f()) { // Rounding down (by not emitting the remaining digits) yields a number // that lies within the unsafe interval. buffer.point = buffer.end - mk + kappa; return roundWeed(buffer, DiyFp.minus(too_high, w).f(), unsafe_interval.f(), rest, (long)divider << -one.e(), unit); } divider /= 10; } // The integrals have been generated. We are at the point of the decimal // separator. In the following loop we simply multiply the remaining digits by // 10 and divide by one. We just need to pay attention to multiply associated // data (like the interval or 'unit'), too. // Instead of multiplying by 10 we multiply by 5 (cheaper operation) and // increase its (imaginary) exponent. At the same time we decrease the // divider's (one's) exponent and shift its significand. // Basically, if fractionals was a DiyFp (with fractionals.e == one.e): // fractionals.f *= 10; // fractionals.f >>= 1; fractionals.e++; // value remains unchanged. // one.f >>= 1; one.e++; // value remains unchanged. // and we have again fractionals.e == one.e which allows us to divide // fractionals.f() by one.f() // We simply combine the *= 10 and the >>= 1. while (true) { fractionals *= 5; unit *= 5; unsafe_interval.setF(unsafe_interval.f() * 5); unsafe_interval.setE(unsafe_interval.e() + 1); // Will be optimized out. one.setF(one.f() >>> 1); one.setE(one.e() + 1); // Integer division by one. int digit = (int)((fractionals >>> -one.e()) & 0xffffffffL); buffer.append((char) ('0' + digit)); fractionals &= one.f() - 1; // Modulo by one. kappa--; if (fractionals < unsafe_interval.f()) { buffer.point = buffer.end - mk + kappa; return roundWeed(buffer, DiyFp.minus(too_high, w).f() * unit, unsafe_interval.f(), fractionals, one.f(), unit); } } } // Provides a decimal representation of v. // Returns true if it succeeds, otherwise the result cannot be trusted. // There will be *length digits inside the buffer (not null-terminated). // If the function returns true then // v == (double) (buffer * 10^decimal_exponent). // The digits in the buffer are the shortest representation possible: no // 0.09999999999999999 instead of 0.1. The shorter representation will even be // chosen even if the longer one would be closer to v. // The last digit will be closest to the actual v. That is, even if several // digits might correctly yield 'v' when read again, the closest will be // computed. static boolean grisu3(double v, FastDtoaBuilder buffer) { long bits = Double.doubleToLongBits(v); DiyFp w = DoubleHelper.asNormalizedDiyFp(bits); // boundary_minus and boundary_plus are the boundaries between v and its // closest floating-point neighbors. Any number strictly between // boundary_minus and boundary_plus will round to v when convert to a double. // Grisu3 will never output representations that lie exactly on a boundary. DiyFp boundary_minus = new DiyFp(), boundary_plus = new DiyFp(); DoubleHelper.normalizedBoundaries(bits, boundary_minus, boundary_plus); assert(boundary_plus.e() == w.e()); DiyFp ten_mk = new DiyFp(); // Cached power of ten: 10^-k int mk = CachedPowers.getCachedPower(w.e() + DiyFp.kSignificandSize, minimal_target_exponent, maximal_target_exponent, ten_mk); assert(minimal_target_exponent <= w.e() + ten_mk.e() + DiyFp.kSignificandSize && maximal_target_exponent >= w.e() + ten_mk.e() + DiyFp.kSignificandSize); // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a // 64 bit significand and ten_mk is thus only precise up to 64 bits. // The DiyFp::Times procedure rounds its result, and ten_mk is approximated // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now // off by a small amount. // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. // In other words: let f = scaled_w.f() and e = scaled_w.e(), then // (f-1) * 2^e < w*10^k < (f+1) * 2^e DiyFp scaled_w = DiyFp.times(w, ten_mk); assert(scaled_w.e() == boundary_plus.e() + ten_mk.e() + DiyFp.kSignificandSize); // In theory it would be possible to avoid some recomputations by computing // the difference between w and boundary_minus/plus (a power of 2) and to // compute scaled_boundary_minus/plus by subtracting/adding from // scaled_w. However the code becomes much less readable and the speed // enhancements are not terriffic. DiyFp scaled_boundary_minus = DiyFp.times(boundary_minus, ten_mk); DiyFp scaled_boundary_plus = DiyFp.times(boundary_plus, ten_mk); // DigitGen will generate the digits of scaled_w. Therefore we have // v == (double) (scaled_w * 10^-mk). // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an // integer than it will be updated. For instance if scaled_w == 1.23 then // the buffer will be filled with "123" und the decimal_exponent will be // decreased by 2. return digitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, buffer, mk); } public static boolean dtoa(double v, FastDtoaBuilder buffer) { assert(v > 0); assert(!Double.isNaN(v)); assert(!Double.isInfinite(v)); return grisu3(v, buffer); } public static String numberToString(double v) { FastDtoaBuilder buffer = new FastDtoaBuilder(); return numberToString(v, buffer) ? buffer.format() : null; } public static boolean numberToString(double v, FastDtoaBuilder buffer) { buffer.reset(); if (v < 0) { buffer.append('-'); v = -v; } return dtoa(v, buffer); } }