/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.optim.nonlinear.vector.jacobian; import org.apache.commons.math3.exception.DimensionMismatchException; import org.apache.commons.math3.exception.TooManyEvaluationsException; import org.apache.commons.math3.linear.ArrayRealVector; import org.apache.commons.math3.linear.RealMatrix; import org.apache.commons.math3.linear.DiagonalMatrix; import org.apache.commons.math3.linear.DecompositionSolver; import org.apache.commons.math3.linear.MatrixUtils; import org.apache.commons.math3.linear.QRDecomposition; import org.apache.commons.math3.linear.EigenDecomposition; import org.apache.commons.math3.optim.OptimizationData; import org.apache.commons.math3.optim.ConvergenceChecker; import org.apache.commons.math3.optim.PointVectorValuePair; import org.apache.commons.math3.optim.nonlinear.vector.Weight; import org.apache.commons.math3.optim.nonlinear.vector.JacobianMultivariateVectorOptimizer; import org.apache.commons.math3.util.FastMath; /** * Base class for implementing least-squares optimizers. * It provides methods for error estimation. * * @since 3.1 * @deprecated All classes and interfaces in this package are deprecated. * The optimizers that were provided here were moved to the * {@link org.apache.commons.math3.fitting.leastsquares} package * (cf. MATH-1008). */ @Deprecated public abstract class AbstractLeastSquaresOptimizer extends JacobianMultivariateVectorOptimizer { /** Square-root of the weight matrix. */ private RealMatrix weightMatrixSqrt; /** Cost value (square root of the sum of the residuals). */ private double cost; /** * @param checker Convergence checker. */ protected AbstractLeastSquaresOptimizer(ConvergenceChecker<PointVectorValuePair> checker) { super(checker); } /** * Computes the weighted Jacobian matrix. * * @param params Model parameters at which to compute the Jacobian. * @return the weighted Jacobian: W<sup>1/2</sup> J. * @throws DimensionMismatchException if the Jacobian dimension does not * match problem dimension. */ protected RealMatrix computeWeightedJacobian(double[] params) { return weightMatrixSqrt.multiply(MatrixUtils.createRealMatrix(computeJacobian(params))); } /** * Computes the cost. * * @param residuals Residuals. * @return the cost. * @see #computeResiduals(double[]) */ protected double computeCost(double[] residuals) { final ArrayRealVector r = new ArrayRealVector(residuals); return Math.sqrt(r.dotProduct(getWeight().operate(r))); } /** * Gets the root-mean-square (RMS) value. * * The RMS the root of the arithmetic mean of the square of all weighted * residuals. * This is related to the criterion that is minimized by the optimizer * as follows: If <em>c</em> if the criterion, and <em>n</em> is the * number of measurements, then the RMS is <em>sqrt (c/n)</em>. * * @return the RMS value. */ public double getRMS() { return Math.sqrt(getChiSquare() / getTargetSize()); } /** * Get a Chi-Square-like value assuming the N residuals follow N * distinct normal distributions centered on 0 and whose variances are * the reciprocal of the weights. * @return chi-square value */ public double getChiSquare() { return cost * cost; } /** * Gets the square-root of the weight matrix. * * @return the square-root of the weight matrix. */ public RealMatrix getWeightSquareRoot() { return weightMatrixSqrt.copy(); } /** * Sets the cost. * * @param cost Cost value. */ protected void setCost(double cost) { this.cost = cost; } /** * Get the covariance matrix of the optimized parameters. * <br/> * Note that this operation involves the inversion of the * <code>J<sup>T</sup>J</code> matrix, where {@code J} is the * Jacobian matrix. * The {@code threshold} parameter is a way for the caller to specify * that the result of this computation should be considered meaningless, * and thus trigger an exception. * * @param params Model parameters. * @param threshold Singularity threshold. * @return the covariance matrix. * @throws org.apache.commons.math3.linear.SingularMatrixException * if the covariance matrix cannot be computed (singular problem). */ public double[][] computeCovariances(double[] params, double threshold) { // Set up the Jacobian. final RealMatrix j = computeWeightedJacobian(params); // Compute transpose(J)J. final RealMatrix jTj = j.transpose().multiply(j); // Compute the covariances matrix. final DecompositionSolver solver = new QRDecomposition(jTj, threshold).getSolver(); return solver.getInverse().getData(); } /** * Computes an estimate of the standard deviation of the parameters. The * returned values are the square root of the diagonal coefficients of the * covariance matrix, {@code sd(a[i]) ~= sqrt(C[i][i])}, where {@code a[i]} * is the optimized value of the {@code i}-th parameter, and {@code C} is * the covariance matrix. * * @param params Model parameters. * @param covarianceSingularityThreshold Singularity threshold (see * {@link #computeCovariances(double[],double) computeCovariances}). * @return an estimate of the standard deviation of the optimized parameters * @throws org.apache.commons.math3.linear.SingularMatrixException * if the covariance matrix cannot be computed. */ public double[] computeSigma(double[] params, double covarianceSingularityThreshold) { final int nC = params.length; final double[] sig = new double[nC]; final double[][] cov = computeCovariances(params, covarianceSingularityThreshold); for (int i = 0; i < nC; ++i) { sig[i] = Math.sqrt(cov[i][i]); } return sig; } /** * {@inheritDoc} * * @param optData Optimization data. In addition to those documented in * {@link JacobianMultivariateVectorOptimizer#parseOptimizationData(OptimizationData[]) * JacobianMultivariateVectorOptimizer}, this method will register the following data: * <ul> * <li>{@link org.apache.commons.math3.optim.nonlinear.vector.Weight}</li> * </ul> * @return {@inheritDoc} * @throws TooManyEvaluationsException if the maximal number of * evaluations is exceeded. * @throws DimensionMismatchException if the initial guess, target, and weight * arguments have inconsistent dimensions. */ @Override public PointVectorValuePair optimize(OptimizationData... optData) throws TooManyEvaluationsException { // Set up base class and perform computation. return super.optimize(optData); } /** * Computes the residuals. * The residual is the difference between the observed (target) * values and the model (objective function) value. * There is one residual for each element of the vector-valued * function. * * @param objectiveValue Value of the the objective function. This is * the value returned from a call to * {@link #computeObjectiveValue(double[]) computeObjectiveValue} * (whose array argument contains the model parameters). * @return the residuals. * @throws DimensionMismatchException if {@code params} has a wrong * length. */ protected double[] computeResiduals(double[] objectiveValue) { final double[] target = getTarget(); if (objectiveValue.length != target.length) { throw new DimensionMismatchException(target.length, objectiveValue.length); } final double[] residuals = new double[target.length]; for (int i = 0; i < target.length; i++) { residuals[i] = target[i] - objectiveValue[i]; } return residuals; } /** * Scans the list of (required and optional) optimization data that * characterize the problem. * If the weight matrix is specified, the {@link #weightMatrixSqrt} * field is recomputed. * * @param optData Optimization data. The following data will be looked for: * <ul> * <li>{@link Weight}</li> * </ul> */ @Override protected void parseOptimizationData(OptimizationData... optData) { // Allow base class to register its own data. super.parseOptimizationData(optData); // The existing values (as set by the previous call) are reused if // not provided in the argument list. for (OptimizationData data : optData) { if (data instanceof Weight) { weightMatrixSqrt = squareRoot(((Weight) data).getWeight()); // If more data must be parsed, this statement _must_ be // changed to "continue". break; } } } /** * Computes the square-root of the weight matrix. * * @param m Symmetric, positive-definite (weight) matrix. * @return the square-root of the weight matrix. */ private RealMatrix squareRoot(RealMatrix m) { if (m instanceof DiagonalMatrix) { final int dim = m.getRowDimension(); final RealMatrix sqrtM = new DiagonalMatrix(dim); for (int i = 0; i < dim; i++) { sqrtM.setEntry(i, i, Math.sqrt(m.getEntry(i, i))); } return sqrtM; } else { final EigenDecomposition dec = new EigenDecomposition(m); return dec.getSquareRoot(); } } }