/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.optim.nonlinear.scalar.noderiv; import org.apache.commons.math3.exception.MathUnsupportedOperationException; import org.apache.commons.math3.exception.NotStrictlyPositiveException; import org.apache.commons.math3.exception.NumberIsTooSmallException; import org.apache.commons.math3.exception.util.LocalizedFormats; import org.apache.commons.math3.optim.ConvergenceChecker; import org.apache.commons.math3.optim.PointValuePair; import org.apache.commons.math3.optim.nonlinear.scalar.GoalType; import org.apache.commons.math3.optim.nonlinear.scalar.LineSearch; import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer; import org.apache.commons.math3.optim.univariate.UnivariatePointValuePair; import org.apache.commons.math3.util.Cloner; import org.apache.commons.math3.util.GWTMath; import org.apache.commons.math3.util.MathArrays; /** * Powell's algorithm. * This code is translated and adapted from the Python version of this * algorithm (as implemented in module {@code optimize.py} v0.5 of * <em>SciPy</em>). * <br/> * The default stopping criterion is based on the differences of the * function value between two successive iterations. It is however possible * to define a custom convergence checker that might terminate the algorithm * earlier. * <br/> * Line search is performed by the {@link LineSearch} class. * <br/> * Constraints are not supported: the call to * {@link #optimize(OptimizationData[]) optimize} will throw * {@link MathUnsupportedOperationException} if bounds are passed to it. * In order to impose simple constraints, the objective function must be * wrapped in an adapter like * {@link org.apache.commons.math3.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter * MultivariateFunctionMappingAdapter} or * {@link org.apache.commons.math3.optim.nonlinear.scalar.MultivariateFunctionPenaltyAdapter * MultivariateFunctionPenaltyAdapter}. * * @since 2.2 */ public class PowellOptimizer extends MultivariateOptimizer { /** * Minimum relative tolerance. */ private static final double MIN_RELATIVE_TOLERANCE = 2 * GWTMath.ulp(1d); /** * Relative threshold. */ private final double relativeThreshold; /** * Absolute threshold. */ private final double absoluteThreshold; /** * Line search. */ private final LineSearch line; /** * This constructor allows to specify a user-defined convergence checker, * in addition to the parameters that control the default convergence * checking procedure. * <br/> * The internal line search tolerances are set to the square-root of their * corresponding value in the multivariate optimizer. * * @param rel Relative threshold. * @param abs Absolute threshold. * @param checker Convergence checker. * @throws NotStrictlyPositiveException if {@code abs <= 0}. * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. */ public PowellOptimizer(double rel, double abs, ConvergenceChecker<PointValuePair> checker) { this(rel, abs, Math.sqrt(rel), Math.sqrt(abs), checker); } /** * This constructor allows to specify a user-defined convergence checker, * in addition to the parameters that control the default convergence * checking procedure and the line search tolerances. * * @param rel Relative threshold for this optimizer. * @param abs Absolute threshold for this optimizer. * @param lineRel Relative threshold for the internal line search optimizer. * @param lineAbs Absolute threshold for the internal line search optimizer. * @param checker Convergence checker. * @throws NotStrictlyPositiveException if {@code abs <= 0}. * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. */ public PowellOptimizer(double rel, double abs, double lineRel, double lineAbs, ConvergenceChecker<PointValuePair> checker) { super(checker); if (rel < MIN_RELATIVE_TOLERANCE) { throw new NumberIsTooSmallException(rel, MIN_RELATIVE_TOLERANCE, true); } if (abs <= 0) { throw new NotStrictlyPositiveException(abs); } relativeThreshold = rel; absoluteThreshold = abs; // Create the line search optimizer. line = new LineSearch(this, lineRel, lineAbs, 1d); } /** * The parameters control the default convergence checking procedure. * <br/> * The internal line search tolerances are set to the square-root of their * corresponding value in the multivariate optimizer. * * @param rel Relative threshold. * @param abs Absolute threshold. * @throws NotStrictlyPositiveException if {@code abs <= 0}. * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. */ public PowellOptimizer(double rel, double abs) { this(rel, abs, null); } /** * Builds an instance with the default convergence checking procedure. * * @param rel Relative threshold. * @param abs Absolute threshold. * @param lineRel Relative threshold for the internal line search optimizer. * @param lineAbs Absolute threshold for the internal line search optimizer. * @throws NotStrictlyPositiveException if {@code abs <= 0}. * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}. */ public PowellOptimizer(double rel, double abs, double lineRel, double lineAbs) { this(rel, abs, lineRel, lineAbs, null); } /** {@inheritDoc} */ @Override protected PointValuePair doOptimize() { checkParameters(); final GoalType goal = getGoalType(); final double[] guess = getStartPoint(); final int n = guess.length; final double[][] direc = new double[n][n]; for (int i = 0; i < n; i++) { direc[i][i] = 1; } final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker(); double[] x = guess; double fVal = computeObjectiveValue(x); double[] x1 = Cloner.clone(x); while (true) { incrementIterationCount(); double fX = fVal; double fX2 = 0; double delta = 0; int bigInd = 0; double alphaMin = 0; for (int i = 0; i < n; i++) { final double[] d = MathArrays.copyOf(direc[i]); fX2 = fVal; final UnivariatePointValuePair optimum = line.search(x, d); fVal = optimum.getValue(); alphaMin = optimum.getPoint(); final double[][] result = newPointAndDirection(x, d, alphaMin); x = result[0]; if ((fX2 - fVal) > delta) { delta = fX2 - fVal; bigInd = i; } } // Default convergence check. boolean stop = 2 * (fX - fVal) <= (relativeThreshold * (Math.abs(fX) + Math.abs(fVal)) + absoluteThreshold); final PointValuePair previous = new PointValuePair(x1, fX); final PointValuePair current = new PointValuePair(x, fVal); if (!stop && checker != null) { // User-defined stopping criteria. stop = checker.converged(getIterations(), previous, current); } if (stop) { if (goal == GoalType.MINIMIZE) { return (fVal < fX) ? current : previous; } else { return (fVal > fX) ? current : previous; } } final double[] d = new double[n]; final double[] x2 = new double[n]; for (int i = 0; i < n; i++) { d[i] = x[i] - x1[i]; x2[i] = 2 * x[i] - x1[i]; } x1 = Cloner.clone(x); fX2 = computeObjectiveValue(x2); if (fX > fX2) { double t = 2 * (fX + fX2 - 2 * fVal); double temp = fX - fVal - delta; t *= temp * temp; temp = fX - fX2; t -= delta * temp * temp; if (t < 0.0) { final UnivariatePointValuePair optimum = line.search(x, d); fVal = optimum.getValue(); alphaMin = optimum.getPoint(); final double[][] result = newPointAndDirection(x, d, alphaMin); x = result[0]; final int lastInd = n - 1; direc[bigInd] = direc[lastInd]; direc[lastInd] = result[1]; } } } } /** * Compute a new point (in the original space) and a new direction * vector, resulting from the line search. * * @param p Point used in the line search. * @param d Direction used in the line search. * @param optimum Optimum found by the line search. * @return a 2-element array containing the new point (at index 0) and * the new direction (at index 1). */ private double[][] newPointAndDirection(double[] p, double[] d, double optimum) { final int n = p.length; final double[] nP = new double[n]; final double[] nD = new double[n]; for (int i = 0; i < n; i++) { nD[i] = d[i] * optimum; nP[i] = p[i] + nD[i]; } final double[][] result = new double[2][]; result[0] = nP; result[1] = nD; return result; } /** * @throws MathUnsupportedOperationException if bounds were passed to the * {@link #optimize(OptimizationData[]) optimize} method. */ private void checkParameters() { if (getLowerBound() != null || getUpperBound() != null) { throw new MathUnsupportedOperationException(LocalizedFormats.CONSTRAINT); } } }