package com.github.quickhull3d; /* * #%L * A Robust 3D Convex Hull Algorithm in Java * %% * Copyright (C) 2004 - 2014 John E. Lloyd * %% * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * #L% */ /** * Basic triangular face used to form the hull. * <p> * The information stored for each face consists of a planar normal, a planar * offset, and a doubly-linked list of three <a href=HalfEdge>HalfEdges</a> * which surround the face in a counter-clockwise direction. * * @author John E. Lloyd, Fall 2004 */ class Face { protected static final int DELETED = 3; protected static final int NON_CONVEX = 2; protected static final int VISIBLE = 1; protected double area; protected HalfEdge he0; protected int mark = VISIBLE; protected Face next; protected int numVerts; protected Vertex outside; protected double planeOffset; private Point3d centroid; private Vector3d normal; public Face() { normal = new Vector3d(); centroid = new Point3d(); mark = VISIBLE; } public static Face create(Vertex[] vtxArray, int[] indices) { Face face = new Face(); HalfEdge hePrev = null; for (int i = 0; i < indices.length; i++) { HalfEdge he = new HalfEdge(vtxArray[indices[i]], face); if (hePrev != null) { he.setPrev(hePrev); hePrev.setNext(he); } else { face.he0 = he; } hePrev = he; } face.he0.setPrev(hePrev); hePrev.setNext(face.he0); // compute the normal and offset face.computeNormalAndCentroid(); return face; } public static Face createTriangle(Vertex v0, Vertex v1, Vertex v2) { return createTriangle(v0, v1, v2, 0); } /** * Constructs a triangule Face from vertices v0, v1, and v2. * * @param v0 * first vertex * @param v1 * second vertex * @param v2 * third vertex */ public static Face createTriangle(Vertex v0, Vertex v1, Vertex v2, double minArea) { Face face = new Face(); HalfEdge he0 = new HalfEdge(v0, face); HalfEdge he1 = new HalfEdge(v1, face); HalfEdge he2 = new HalfEdge(v2, face); he0.prev = he2; he0.next = he1; he1.prev = he0; he1.next = he2; he2.prev = he1; he2.next = he0; face.he0 = he0; // compute the normal and offset face.computeNormalAndCentroid(minArea); return face; } public void computeCentroid(Point3d centroid) { centroid.setZero(); HalfEdge he = he0; do { centroid.add(he.head().pnt); he = he.next; } while (he != he0); centroid.scale(1 / (double) numVerts); } public void computeNormal(Vector3d normal) { HalfEdge he1 = he0.next; HalfEdge he2 = he1.next; Point3d p0 = he0.head().pnt; Point3d p2 = he1.head().pnt; double d2x = p2.x - p0.x; double d2y = p2.y - p0.y; double d2z = p2.z - p0.z; normal.setZero(); numVerts = 2; while (he2 != he0) { double d1x = d2x; double d1y = d2y; double d1z = d2z; p2 = he2.head().pnt; d2x = p2.x - p0.x; d2y = p2.y - p0.y; d2z = p2.z - p0.z; normal.x += d1y * d2z - d1z * d2y; normal.y += d1z * d2x - d1x * d2z; normal.z += d1x * d2y - d1y * d2x; he1 = he2; he2 = he2.next; numVerts++; } area = normal.norm(); normal.scale(1 / area); } public void computeNormal(Vector3d normal, double minArea) { computeNormal(normal); if (area < minArea) { // make the normal more robust by removing // components parallel to the longest edge HalfEdge hedgeMax = null; double lenSqrMax = 0; HalfEdge hedge = he0; do { double lenSqr = hedge.lengthSquared(); if (lenSqr > lenSqrMax) { hedgeMax = hedge; lenSqrMax = lenSqr; } hedge = hedge.next; } while (hedge != he0); Point3d p2 = hedgeMax.head().pnt; Point3d p1 = hedgeMax.tail().pnt; double lenMax = Math.sqrt(lenSqrMax); double ux = (p2.x - p1.x) / lenMax; double uy = (p2.y - p1.y) / lenMax; double uz = (p2.z - p1.z) / lenMax; double dot = normal.x * ux + normal.y * uy + normal.z * uz; normal.x -= dot * ux; normal.y -= dot * uy; normal.z -= dot * uz; normal.normalize(); } } /** * Computes the distance from a point p to the plane of this face. * * @param p * the point * @return distance from the point to the plane */ public double distanceToPlane(Point3d p) { return normal.x * p.x + normal.y * p.y + normal.z * p.z - planeOffset; } /** * Finds the half-edge within this face which has tail <code>vt</code> and * head <code>vh</code>. * * @param vt * tail point * @param vh * head point * @return the half-edge, or null if none is found. */ public HalfEdge findEdge(Vertex vt, Vertex vh) { HalfEdge he = he0; do { if (he.head() == vh && he.tail() == vt) { return he; } he = he.next; } while (he != he0); return null; } public Point3d getCentroid() { return centroid; } /** * Gets the i-th half-edge associated with the face. * * @param i * the half-edge index, in the range 0-2. * @return the half-edge */ public HalfEdge getEdge(int i) { HalfEdge he = he0; while (i > 0) { he = he.next; i--; } while (i < 0) { he = he.prev; i++; } return he; } public HalfEdge getFirstEdge() { return he0; } /** * Returns the normal of the plane associated with this face. * * @return the planar normal */ public Vector3d getNormal() { return normal; } public void getVertexIndices(int[] idxs) { HalfEdge he = he0; int i = 0; do { idxs[i++] = he.head().index; he = he.next; } while (he != he0); } public String getVertexString() { String s = null; HalfEdge he = he0; do { if (s == null) { s = "" + he.head().index; } else { s += " " + he.head().index; } he = he.next; } while (he != he0); return s; } public int mergeAdjacentFace(HalfEdge hedgeAdj, Face[] discarded) { Face oppFace = hedgeAdj.oppositeFace(); int numDiscarded = 0; discarded[numDiscarded++] = oppFace; oppFace.mark = DELETED; HalfEdge hedgeOpp = hedgeAdj.getOpposite(); HalfEdge hedgeAdjPrev = hedgeAdj.prev; HalfEdge hedgeAdjNext = hedgeAdj.next; HalfEdge hedgeOppPrev = hedgeOpp.prev; HalfEdge hedgeOppNext = hedgeOpp.next; while (hedgeAdjPrev.oppositeFace() == oppFace) { hedgeAdjPrev = hedgeAdjPrev.prev; hedgeOppNext = hedgeOppNext.next; } while (hedgeAdjNext.oppositeFace() == oppFace) { hedgeOppPrev = hedgeOppPrev.prev; hedgeAdjNext = hedgeAdjNext.next; } HalfEdge hedge; for (hedge = hedgeOppNext; hedge != hedgeOppPrev.next; hedge = hedge.next) { hedge.face = this; } if (hedgeAdj == he0) { he0 = hedgeAdjNext; } // handle the half edges at the head Face discardedFace; discardedFace = connectHalfEdges(hedgeOppPrev, hedgeAdjNext); if (discardedFace != null) { discarded[numDiscarded++] = discardedFace; } // handle the half edges at the tail discardedFace = connectHalfEdges(hedgeAdjPrev, hedgeOppNext); if (discardedFace != null) { discarded[numDiscarded++] = discardedFace; } computeNormalAndCentroid(); checkConsistency(); return numDiscarded; } public int numVertices() { return numVerts; } public void triangulate(FaceList newFaces, double minArea) { HalfEdge hedge; if (numVertices() < 4) { return; } Vertex v0 = he0.head(); hedge = he0.next; HalfEdge oppPrev = hedge.opposite; Face face0 = null; for (hedge = hedge.next; hedge != he0.prev; hedge = hedge.next) { Face face = createTriangle(v0, hedge.prev.head(), hedge.head(), minArea); face.he0.next.setOpposite(oppPrev); face.he0.prev.setOpposite(hedge.opposite); oppPrev = face.he0; newFaces.add(face); if (face0 == null) { face0 = face; } } hedge = new HalfEdge(he0.prev.prev.head(), this); hedge.setOpposite(oppPrev); hedge.prev = he0; hedge.prev.next = hedge; hedge.next = he0.prev; hedge.next.prev = hedge; computeNormalAndCentroid(minArea); checkConsistency(); for (Face face = face0; face != null; face = face.next) { face.checkConsistency(); } } /** * return the squared area of the triangle defined by the half edge hedge0 * and the point at the head of hedge1. * * @param hedge0 * @param hedge1 * @return */ public double areaSquared(HalfEdge hedge0, HalfEdge hedge1) { Point3d p0 = hedge0.tail().pnt; Point3d p1 = hedge0.head().pnt; Point3d p2 = hedge1.head().pnt; double dx1 = p1.x - p0.x; double dy1 = p1.y - p0.y; double dz1 = p1.z - p0.z; double dx2 = p2.x - p0.x; double dy2 = p2.y - p0.y; double dz2 = p2.z - p0.z; double x = dy1 * dz2 - dz1 * dy2; double y = dz1 * dx2 - dx1 * dz2; double z = dx1 * dy2 - dy1 * dx2; return x * x + y * y + z * z; } private void computeNormalAndCentroid() { computeNormal(normal); computeCentroid(centroid); planeOffset = normal.dot(centroid); int numv = 0; HalfEdge he = he0; do { numv++; he = he.next; } while (he != he0); if (numv != numVerts) { throw new InternalErrorException("face " + getVertexString() + " numVerts=" + numVerts + " should be " + numv); } } private void computeNormalAndCentroid(double minArea) { computeNormal(normal, minArea); computeCentroid(centroid); planeOffset = normal.dot(centroid); } private Face connectHalfEdges(HalfEdge hedgePrev, HalfEdge hedge) { Face discardedFace = null; if (hedgePrev.oppositeFace() == hedge.oppositeFace()) { // then there is // a redundant // edge that we // can get rid // off Face oppFace = hedge.oppositeFace(); HalfEdge hedgeOpp; if (hedgePrev == he0) { he0 = hedge; } if (oppFace.numVertices() == 3) { // then we can get rid of the // opposite face altogether hedgeOpp = hedge.getOpposite().prev.getOpposite(); oppFace.mark = DELETED; discardedFace = oppFace; } else { hedgeOpp = hedge.getOpposite().next; if (oppFace.he0 == hedgeOpp.prev) { oppFace.he0 = hedgeOpp; } hedgeOpp.prev = hedgeOpp.prev.prev; hedgeOpp.prev.next = hedgeOpp; } hedge.prev = hedgePrev.prev; hedge.prev.next = hedge; hedge.opposite = hedgeOpp; hedgeOpp.opposite = hedge; // oppFace was modified, so need to recompute oppFace.computeNormalAndCentroid(); } else { hedgePrev.next = hedge; hedge.prev = hedgePrev; } return discardedFace; } void checkConsistency() { // do a sanity check on the face HalfEdge hedge = he0; double maxd = 0; int numv = 0; if (numVerts < 3) { throw new InternalErrorException( "degenerate face: " + getVertexString()); } do { HalfEdge hedgeOpp = hedge.getOpposite(); if (hedgeOpp == null) { throw new InternalErrorException("face " + getVertexString() + ": " + "unreflected half edge " + hedge.getVertexString()); } else if (hedgeOpp.getOpposite() != hedge) { throw new InternalErrorException("face " + getVertexString() + ": " + "opposite half edge " + hedgeOpp.getVertexString() + " has opposite " + hedgeOpp.getOpposite().getVertexString()); } if (hedgeOpp.head() != hedge.tail() || hedge.head() != hedgeOpp.tail()) { throw new InternalErrorException("face " + getVertexString() + ": " + "half edge " + hedge.getVertexString() + " reflected by " + hedgeOpp.getVertexString()); } Face oppFace = hedgeOpp.face; if (oppFace == null) { throw new InternalErrorException("face " + getVertexString() + ": " + "no face on half edge " + hedgeOpp.getVertexString()); } else if (oppFace.mark == DELETED) { throw new InternalErrorException( "face " + getVertexString() + ": " + "opposite face " + oppFace.getVertexString() + " not on hull"); } double d = Math.abs(distanceToPlane(hedge.head().pnt)); if (d > maxd) { maxd = d; } numv++; hedge = hedge.next; } while (hedge != he0); if (numv != numVerts) { throw new InternalErrorException("face " + getVertexString() + " numVerts=" + numVerts + " should be " + numv); } } }