/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.analysis.integration; import org.apache.commons.math3.exception.MathIllegalArgumentException; import org.apache.commons.math3.exception.MaxCountExceededException; import org.apache.commons.math3.exception.NotStrictlyPositiveException; import org.apache.commons.math3.exception.NumberIsTooLargeException; import org.apache.commons.math3.exception.NumberIsTooSmallException; import org.apache.commons.math3.exception.TooManyEvaluationsException; import org.apache.commons.math3.util.FastMath; /** * Implements the <a href="http://en.wikipedia.org/wiki/Midpoint_method"> * Midpoint Rule</a> for integration of real univariate functions. For * reference, see <b>Numerical Mathematics</b>, ISBN 0387989595, * chapter 9.2. * <p> * The function should be integrable.</p> * * @since 3.3 */ public class MidPointIntegrator extends BaseAbstractUnivariateIntegrator { /** Maximum number of iterations for midpoint. */ public static final int MIDPOINT_MAX_ITERATIONS_COUNT = 64; /** * Build a midpoint integrator with given accuracies and iterations counts. * @param relativeAccuracy relative accuracy of the result * @param absoluteAccuracy absolute accuracy of the result * @param minimalIterationCount minimum number of iterations * @param maximalIterationCount maximum number of iterations * (must be less than or equal to {@link #MIDPOINT_MAX_ITERATIONS_COUNT} * @exception NotStrictlyPositiveException if minimal number of iterations * is not strictly positive * @exception NumberIsTooSmallException if maximal number of iterations * is lesser than or equal to the minimal number of iterations * @exception NumberIsTooLargeException if maximal number of iterations * is greater than {@link #MIDPOINT_MAX_ITERATIONS_COUNT} */ public MidPointIntegrator(final double relativeAccuracy, final double absoluteAccuracy, final int minimalIterationCount, final int maximalIterationCount) throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException { super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount); if (maximalIterationCount > MIDPOINT_MAX_ITERATIONS_COUNT) { throw new NumberIsTooLargeException(maximalIterationCount, MIDPOINT_MAX_ITERATIONS_COUNT, false); } } /** * Build a midpoint integrator with given iteration counts. * @param minimalIterationCount minimum number of iterations * @param maximalIterationCount maximum number of iterations * (must be less than or equal to {@link #MIDPOINT_MAX_ITERATIONS_COUNT} * @exception NotStrictlyPositiveException if minimal number of iterations * is not strictly positive * @exception NumberIsTooSmallException if maximal number of iterations * is lesser than or equal to the minimal number of iterations * @exception NumberIsTooLargeException if maximal number of iterations * is greater than {@link #MIDPOINT_MAX_ITERATIONS_COUNT} */ public MidPointIntegrator(final int minimalIterationCount, final int maximalIterationCount) throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException { super(minimalIterationCount, maximalIterationCount); if (maximalIterationCount > MIDPOINT_MAX_ITERATIONS_COUNT) { throw new NumberIsTooLargeException(maximalIterationCount, MIDPOINT_MAX_ITERATIONS_COUNT, false); } } /** * Construct a midpoint integrator with default settings. * (max iteration count set to {@link #MIDPOINT_MAX_ITERATIONS_COUNT}) */ public MidPointIntegrator() { super(DEFAULT_MIN_ITERATIONS_COUNT, MIDPOINT_MAX_ITERATIONS_COUNT); } /** * Compute the n-th stage integral of midpoint rule. * This function should only be called by API <code>integrate()</code> in the package. * To save time it does not verify arguments - caller does. * <p> * The interval is divided equally into 2^n sections rather than an * arbitrary m sections because this configuration can best utilize the * already computed values.</p> * * @param n the stage of 1/2 refinement. Must be larger than 0. * @param previousStageResult Result from the previous call to the * {@code stage} method. * @param min Lower bound of the integration interval. * @param diffMaxMin Difference between the lower bound and upper bound * of the integration interval. * @return the value of n-th stage integral * @throws TooManyEvaluationsException if the maximal number of evaluations * is exceeded. */ private double stage(final int n, double previousStageResult, double min, double diffMaxMin) throws TooManyEvaluationsException { // number of new points in this stage final long np = 1L << (n - 1); double sum = 0; // spacing between adjacent new points final double spacing = diffMaxMin / np; // the first new point double x = min + 0.5 * spacing; for (long i = 0; i < np; i++) { sum += computeObjectiveValue(x); x += spacing; } // add the new sum to previously calculated result return 0.5 * (previousStageResult + sum * spacing); } /** {@inheritDoc} */ @Override protected double doIntegrate() throws MathIllegalArgumentException, TooManyEvaluationsException, MaxCountExceededException { final double min = getMin(); final double diff = getMax() - min; final double midPoint = min + 0.5 * diff; double oldt = diff * computeObjectiveValue(midPoint); while (true) { incrementCount(); final int i = getIterations(); final double t = stage(i, oldt, min, diff); if (i >= getMinimalIterationCount()) { final double delta = Math.abs(t - oldt); final double rLimit = getRelativeAccuracy() * (Math.abs(oldt) + Math.abs(t)) * 0.5; if ((delta <= rLimit) || (delta <= getAbsoluteAccuracy())) { return t; } } oldt = t; } } }