// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Ported to Java from Mozilla's version of V8-dtoa by Hannes Wallnoefer. // The original revision was 67d1049b0bf9 from the mozilla-central tree. package org.mozilla.javascript.v8dtoa; // This "Do It Yourself Floating Point" class implements a floating-point number // with a uint64 significand and an int exponent. Normalized DiyFp numbers will // have the most significant bit of the significand set. // Multiplication and Subtraction do not normalize their results. // DiyFp are not designed to contain special doubles (NaN and Infinity). class DiyFp { private long f; private int e; static final int kSignificandSize = 64; static final long kUint64MSB = 0x8000000000000000L; DiyFp() { this.f = 0; this.e = 0; } DiyFp(long f, int e) { this.f = f; this.e = e; } private static boolean uint64_gte(long a, long b) { // greater-or-equal for unsigned int64 in java-style... return (a == b) || ((a > b) ^ (a < 0) ^ (b < 0)); } // this = this - other. // The exponents of both numbers must be the same and the significand of this // must be bigger than the significand of other. // The result will not be normalized. void subtract(DiyFp other) { assert (e == other.e); assert uint64_gte(f, other.f); f -= other.f; } // Returns a - b. // The exponents of both numbers must be the same and this must be bigger // than other. The result will not be normalized. static DiyFp minus(DiyFp a, DiyFp b) { DiyFp result = new DiyFp(a.f, a.e); result.subtract(b); return result; } // this = this * other. void multiply(DiyFp other) { // Simply "emulates" a 128 bit multiplication. // However: the resulting number only contains 64 bits. The least // significant 64 bits are only used for rounding the most significant 64 // bits. final long kM32 = 0xFFFFFFFFL; long a = f >>> 32; long b = f & kM32; long c = other.f >>> 32; long d = other.f & kM32; long ac = a * c; long bc = b * c; long ad = a * d; long bd = b * d; long tmp = (bd >>> 32) + (ad & kM32) + (bc & kM32); // By adding 1U << 31 to tmp we round the final result. // Halfway cases will be round up. tmp += 1L << 31; long result_f = ac + (ad >>> 32) + (bc >>> 32) + (tmp >>> 32); e += other.e + 64; f = result_f; } // returns a * b; static DiyFp times(DiyFp a, DiyFp b) { DiyFp result = new DiyFp(a.f, a.e); result.multiply(b); return result; } void normalize() { assert(f != 0); long f = this.f; int e = this.e; // This method is mainly called for normalizing boundaries. In general // boundaries need to be shifted by 10 bits. We thus optimize for this case. final long k10MSBits = 0xFFC00000L << 32; while ((f & k10MSBits) == 0) { f <<= 10; e -= 10; } while ((f & kUint64MSB) == 0) { f <<= 1; e--; } this.f = f; this.e = e; } static DiyFp normalize(DiyFp a) { DiyFp result = new DiyFp(a.f, a.e); result.normalize(); return result; } long f() { return f; } int e() { return e; } void setF(long new_value) { f = new_value; } void setE(int new_value) { e = new_value; } @Override public String toString() { return "[DiyFp f:" + f + ", e:" + e + "]"; } }