package edu.stanford.nlp.util; import edu.stanford.nlp.util.logging.Redwood; import java.util.*; /** * PriorityQueue with explicit double priority values. Larger doubles are higher priorities. BinaryHeap-backed. * * For each entry, uses ~ 24 (entry) + 16? (Map.Entry) + 4 (List entry) = 44 bytes? * * @author Dan Klein * @author Christopher Manning * @param <E> Type of elements in the priority queue */ public class BinaryHeapPriorityQueue<E> extends AbstractSet<E> implements PriorityQueue<E>, Iterator<E> { /** A logger for this class */ private static Redwood.RedwoodChannels log = Redwood.channels(BinaryHeapPriorityQueue.class); /** * An {@code Entry} stores an object in the queue along with * its current location (array position) and priority. * uses ~ 8 (self) + 4 (key ptr) + 4 (index) + 8 (priority) = 24 bytes? */ private static final class Entry<E> { public E key; public int index; public double priority; @Override public String toString() { return key + " at " + index + " (" + priority + ')'; } } @Override public boolean hasNext() { return size() > 0; } @Override public E next() { if (size() == 0) { throw new NoSuchElementException("Empty PQ"); } return removeFirst(); } @Override public void remove() { throw new UnsupportedOperationException(); } /** * {@code indexToEntry} maps linear array locations (not * priorities) to heap entries. */ private final List<Entry<E>> indexToEntry; /** * {@code keyToEntry} maps heap objects to their heap * entries. */ private final Map<E,Entry<E>> keyToEntry; private Entry<E> parent(Entry<E> entry) { int index = entry.index; return (index > 0 ? getEntry((index - 1) / 2) : null); } private Entry<E> leftChild(Entry<E> entry) { int leftIndex = entry.index * 2 + 1; return (leftIndex < size() ? getEntry(leftIndex) : null); } private Entry<E> rightChild(Entry<E> entry) { int index = entry.index; int rightIndex = index * 2 + 2; return (rightIndex < size() ? getEntry(rightIndex) : null); } private int compare(Entry<E> entryA, Entry<E> entryB) { int result = compare(entryA.priority, entryB.priority); if (result != 0) { return result; } if ((entryA.key instanceof Comparable) && (entryB.key instanceof Comparable)) { Comparable<E> key = ErasureUtils.uncheckedCast(entryA.key); return key.compareTo(entryB.key); } return result; } private static int compare(double a, double b) { double diff = a - b; if (diff > 0.0) { return 1; } if (diff < 0.0) { return -1; } return 0; } /** * Structural swap of two entries. * */ private void swap(Entry<E> entryA, Entry<E> entryB) { int indexA = entryA.index; int indexB = entryB.index; entryA.index = indexB; entryB.index = indexA; indexToEntry.set(indexA, entryB); indexToEntry.set(indexB, entryA); } /** * Remove the last element of the heap (last in the index array). */ public void removeLastEntry() { Entry<E> entry = indexToEntry.remove(size() - 1); keyToEntry.remove(entry.key); } /** * Get the entry by key (null if none). */ private Entry<E> getEntry(E key) { return keyToEntry.get(key); } /** * Get entry by index, exception if none. */ private Entry<E> getEntry(int index) { Entry<E> entry = indexToEntry.get(index); return entry; } private Entry<E> makeEntry(E key) { Entry<E> entry = new Entry<>(); entry.index = size(); entry.key = key; entry.priority = Double.NEGATIVE_INFINITY; indexToEntry.add(entry); keyToEntry.put(key, entry); return entry; } /** * iterative heapify up: move item o at index up until correctly placed */ private void heapifyUp(Entry<E> entry) { while (true) { if (entry.index == 0) { break; } Entry<E> parentEntry = parent(entry); if (compare(entry, parentEntry) <= 0) { break; } swap(entry, parentEntry); } } /** * On the assumption that * leftChild(entry) and rightChild(entry) satisfy the heap property, * make sure that the heap at entry satisfies this property by possibly * percolating the element entry downwards. I've replaced the obvious * recursive formulation with an iterative one to gain (marginal) speed */ private void heapifyDown(final Entry<E> entry) { Entry<E> bestEntry; // initialized below do { bestEntry = entry; Entry<E> leftEntry = leftChild(entry); if (leftEntry != null) { if (compare(bestEntry, leftEntry) < 0) { bestEntry = leftEntry; } } Entry<E> rightEntry = rightChild(entry); if (rightEntry != null) { if (compare(bestEntry, rightEntry) < 0) { bestEntry = rightEntry; } } if (bestEntry != entry) { // Swap min and current swap(bestEntry, entry); // at start of next loop, we set currentIndex to largestIndex // this indexation now holds current, so it is unchanged } } while (bestEntry != entry); // log.info("Done with heapify down"); // verify(); } private void heapify(Entry<E> entry) { heapifyUp(entry); heapifyDown(entry); } /** * Finds the E with the highest priority, removes it, * and returns it. * * @return the E with highest priority */ @Override public E removeFirst() { E first = getFirst(); remove(first); return first; } /** * Finds the E with the highest priority and returns it, without * modifying the queue. * * @return the E with minimum key */ @Override public E getFirst() { if (isEmpty()) { throw new NoSuchElementException(); } return getEntry(0).key; } /** {@inheritDoc} */ @Override public double getPriority() { if (isEmpty()) { throw new NoSuchElementException(); } return getEntry(0).priority; } /** * Searches for the object in the queue and returns it. May be useful if * you can create a new object that is .equals() to an object in the queue * but is not actually identical, or if you want to modify an object that is * in the queue. * * @return null if the object is not in the queue, otherwise returns the * object. */ public E getObject(E key) { if ( ! contains(key)) return null; Entry<E> e = getEntry(key); return e.key; } /** {@inheritDoc} */ @Override public double getPriority(E key) { Entry<E> entry = getEntry(key); if (entry == null) { return Double.NEGATIVE_INFINITY; } return entry.priority; } /** * Adds an object to the queue with the minimum priority * (Double.NEGATIVE_INFINITY). If the object is already in the queue * with worse priority, this does nothing. If the object is * already present, with better priority, it will NOT cause an * a decreasePriority. * * @param key an <code>E</code> value * @return whether the key was present before */ @Override public boolean add(E key) { if (contains(key)) { return false; } makeEntry(key); return true; } /** {@inheritDoc} */ @Override public boolean add(E key, double priority) { // log.info("Adding " + key + " with priority " + priority); if (add(key)) { relaxPriority(key, priority); return true; } return false; } @SuppressWarnings("unchecked") @Override public boolean remove(Object key) { E eKey = (E) key; Entry<E> entry = getEntry(eKey); if (entry == null) { return false; } removeEntry(entry); return true; } private void removeEntry(Entry<E> entry) { Entry<E> lastEntry = getLastEntry(); if (entry != lastEntry) { swap(entry, lastEntry); removeLastEntry(); heapify(lastEntry); } else { removeLastEntry(); } } private Entry<E> getLastEntry() { return getEntry(size() - 1); } /** * Promotes a key in the queue, adding it if it wasn't there already. If the specified priority is worse than the current priority, nothing happens. Faster than add if you don't care about whether the key is new. * * @param key an <code>Object</code> value * @return whether the priority actually improved. */ @Override public boolean relaxPriority(E key, double priority) { Entry<E> entry = getEntry(key); if (entry == null) { entry = makeEntry(key); } if (compare(priority, entry.priority) <= 0) { return false; } entry.priority = priority; heapifyUp(entry); return true; } /** * Demotes a key in the queue, adding it if it wasn't there already. If the specified priority is better than the current priority, nothing happens. If you decrease the priority on a non-present key, it will get added, but at it's old implicit priority of Double.NEGATIVE_INFINITY. * * @param key an <code>Object</code> value * @return whether the priority actually improved. */ public boolean decreasePriority(E key, double priority) { Entry<E> entry = getEntry(key); if (entry == null) { entry = makeEntry(key); } if (compare(priority, entry.priority) >= 0) { return false; } entry.priority = priority; heapifyDown(entry); return true; } /** * Changes a priority, either up or down, adding the key it if it wasn't there already. * * @param key an <code>Object</code> value * @return whether the priority actually changed. */ @Override public boolean changePriority(E key, double priority) { Entry<E> entry = getEntry(key); if (entry == null) { entry = makeEntry(key); } if (compare(priority, entry.priority) == 0) { return false; } entry.priority = priority; heapify(entry); return true; } /** * Checks if the queue is empty. * * @return a <code>boolean</code> value */ @Override public boolean isEmpty() { return indexToEntry.isEmpty(); } /** * Get the number of elements in the queue. * * @return queue size */ @Override public int size() { return indexToEntry.size(); } /** * Returns whether the queue contains the given key. */ @SuppressWarnings("SuspiciousMethodCalls") @Override public boolean contains(Object key) { return keyToEntry.containsKey(key); } @Override public List<E> toSortedList() { List<E> sortedList = new ArrayList<>(size()); BinaryHeapPriorityQueue<E> queue = this.deepCopy(); while (!queue.isEmpty()) { sortedList.add(queue.removeFirst()); } return sortedList; } public BinaryHeapPriorityQueue<E> deepCopy(MapFactory<E, Entry<E>> mapFactory) { BinaryHeapPriorityQueue<E> queue = new BinaryHeapPriorityQueue<>(mapFactory); for (Entry<E> entry : keyToEntry.values()) { queue.relaxPriority(entry.key, entry.priority); } return queue; } public BinaryHeapPriorityQueue<E> deepCopy() { return deepCopy(MapFactory.<E,Entry<E>>hashMapFactory()); } @Override public Iterator<E> iterator() { return Collections.unmodifiableCollection(toSortedList()).iterator(); } /** * Clears the queue. */ @Override public void clear() { indexToEntry.clear(); keyToEntry.clear(); } // private void verify() { // for (int i = 0; i < indexToEntry.size(); i++) { // if (i != 0) { // // check ordering // if (compare(getEntry(i), parent(getEntry(i))) < 0) { // log.info("Error in the ordering of the heap! ("+i+")"); // System.exit(0); // } // } // // check placement // if (i != ((Entry)indexToEntry.get(i)).index) // log.info("Error in placement in the heap!"); // } // } @Override public String toString() { return toString(0); } /** {@inheritDoc} */ @Override public String toString(int maxKeysToPrint) { if (maxKeysToPrint <= 0) maxKeysToPrint = Integer.MAX_VALUE; List<E> sortedKeys = toSortedList(); StringBuilder sb = new StringBuilder("["); for (int i = 0; i < maxKeysToPrint && i < sortedKeys.size(); i++) { E key = sortedKeys.get(i); sb.append(key).append('=').append(getPriority(key)); if (i < maxKeysToPrint - 1 && i < sortedKeys.size() - 1) { sb.append(", "); } } sb.append(']'); return sb.toString(); } public String toVerticalString() { List<E> sortedKeys = toSortedList(); StringBuilder sb = new StringBuilder(); for (Iterator<E> keyI = sortedKeys.iterator(); keyI.hasNext();) { E key = keyI.next(); sb.append(key); sb.append('\t'); sb.append(getPriority(key)); if (keyI.hasNext()) { sb.append('\n'); } } return sb.toString(); } public BinaryHeapPriorityQueue() { this(MapFactory.<E,Entry<E>>hashMapFactory()); } public BinaryHeapPriorityQueue(int initCapacity) { this(MapFactory.<E,Entry<E>>hashMapFactory(),initCapacity); } public BinaryHeapPriorityQueue(MapFactory<E, Entry<E>> mapFactory) { indexToEntry = new ArrayList<>(); keyToEntry = mapFactory.newMap(); } public BinaryHeapPriorityQueue(MapFactory<E, Entry<E>> mapFactory, int initCapacity) { indexToEntry = new ArrayList<>(initCapacity); keyToEntry = mapFactory.newMap(initCapacity); } }