/******************************************************************************* * Copyright 2011 See AUTHORS file. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on * an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the * specific language governing permissions and limitations under the License. ******************************************************************************/ package com.badlogic.gdx.utils; import com.badlogic.gdx.math.MathUtils; import java.util.Iterator; import java.util.NoSuchElementException; /** * An unordered map where the keys are ints and values are floats. This implementation is a cuckoo hash map using 3 * hashes, random walking, and a small stash for problematic keys. Null keys are not allowed. No allocation is done * except when growing the table size. <br> * <br> * This map performs very fast get, containsKey, and remove (typically O(1), worst case O(log(n))). Put may be a bit * slower, depending on hash collisions. Load factors greater than 0.91 greatly increase the chances the map will have * to rehash to the next higher POT size. * * @author Nathan Sweet */ public class IntFloatMap { private static final int PRIME1 = 0xbe1f14b1; private static final int PRIME2 = 0xb4b82e39; private static final int PRIME3 = 0xced1c241; private static final int EMPTY = 0; public int size; int[] keyTable; float[] valueTable; int capacity, stashSize; float zeroValue; boolean hasZeroValue; private float loadFactor; private int hashShift, mask, threshold; private int stashCapacity; private int pushIterations; private Entries entries; private Values values; private Keys keys; /** * Creates a new map with an initial capacity of 32 and a load factor of 0.8. This map will hold 25 items before * growing the backing table. */ public IntFloatMap() { this(32, 0.8f); } /** * Creates a new map with a load factor of 0.8. This map will hold initialCapacity * 0.8 items before growing the * backing table. */ public IntFloatMap(int initialCapacity) { this(initialCapacity, 0.8f); } /** * Creates a new map with the specified initial capacity and load factor. This map will hold initialCapacity * * loadFactor items before growing the backing table. */ public IntFloatMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("initialCapacity must be >= 0: " + initialCapacity); if (capacity > 1 << 30) throw new IllegalArgumentException("initialCapacity is too large: " + initialCapacity); capacity = MathUtils.nextPowerOfTwo(initialCapacity); if (loadFactor <= 0) throw new IllegalArgumentException("loadFactor must be > 0: " + loadFactor); this.loadFactor = loadFactor; threshold = (int) (capacity * loadFactor); mask = capacity - 1; hashShift = 31 - Integer.numberOfTrailingZeros(capacity); stashCapacity = Math.max(3, (int) Math.ceil(Math.log(capacity)) * 2); pushIterations = Math.max(Math.min(capacity, 8), (int) Math.sqrt(capacity) / 8); keyTable = new int[capacity + stashCapacity]; valueTable = new float[keyTable.length]; } public void put(int key, float value) { if (key == 0) { zeroValue = value; if (!hasZeroValue) { hasZeroValue = true; size++; } return; } int[] keyTable = this.keyTable; // Check for existing keys. int index1 = key & mask; int key1 = keyTable[index1]; if (key == key1) { valueTable[index1] = value; return; } int index2 = hash2(key); int key2 = keyTable[index2]; if (key == key2) { valueTable[index2] = value; return; } int index3 = hash3(key); int key3 = keyTable[index3]; if (key == key3) { valueTable[index3] = value; return; } // Update key in the stash. for (int i = capacity, n = i + stashSize; i < n; i++) { if (key == keyTable[i]) { valueTable[i] = value; return; } } // Check for empty buckets. if (key1 == EMPTY) { keyTable[index1] = key; valueTable[index1] = value; if (size++ >= threshold) resize(capacity << 1); return; } if (key2 == EMPTY) { keyTable[index2] = key; valueTable[index2] = value; if (size++ >= threshold) resize(capacity << 1); return; } if (key3 == EMPTY) { keyTable[index3] = key; valueTable[index3] = value; if (size++ >= threshold) resize(capacity << 1); return; } push(key, value, index1, key1, index2, key2, index3, key3); } public void putAll(IntFloatMap map) { for (Entry entry : map.entries()) put(entry.key, entry.value); } /** Skips checks for existing keys. */ private void putResize(int key, float value) { if (key == 0) { zeroValue = value; hasZeroValue = true; return; } // Check for empty buckets. int index1 = key & mask; int key1 = keyTable[index1]; if (key1 == EMPTY) { keyTable[index1] = key; valueTable[index1] = value; if (size++ >= threshold) resize(capacity << 1); return; } int index2 = hash2(key); int key2 = keyTable[index2]; if (key2 == EMPTY) { keyTable[index2] = key; valueTable[index2] = value; if (size++ >= threshold) resize(capacity << 1); return; } int index3 = hash3(key); int key3 = keyTable[index3]; if (key3 == EMPTY) { keyTable[index3] = key; valueTable[index3] = value; if (size++ >= threshold) resize(capacity << 1); return; } push(key, value, index1, key1, index2, key2, index3, key3); } private void push(int insertKey, float insertValue, int index1, int key1, int index2, int key2, int index3, int key3) { int[] keyTable = this.keyTable; float[] valueTable = this.valueTable; int mask = this.mask; // Push keys until an empty bucket is found. int evictedKey; float evictedValue; int i = 0, pushIterations = this.pushIterations; do { // Replace the key and value for one of the hashes. switch (MathUtils.random(2)) { case 0: evictedKey = key1; evictedValue = valueTable[index1]; keyTable[index1] = insertKey; valueTable[index1] = insertValue; break; case 1: evictedKey = key2; evictedValue = valueTable[index2]; keyTable[index2] = insertKey; valueTable[index2] = insertValue; break; default: evictedKey = key3; evictedValue = valueTable[index3]; keyTable[index3] = insertKey; valueTable[index3] = insertValue; break; } // If the evicted key hashes to an empty bucket, put it there and stop. index1 = evictedKey & mask; key1 = keyTable[index1]; if (key1 == EMPTY) { keyTable[index1] = evictedKey; valueTable[index1] = evictedValue; if (size++ >= threshold) resize(capacity << 1); return; } index2 = hash2(evictedKey); key2 = keyTable[index2]; if (key2 == EMPTY) { keyTable[index2] = evictedKey; valueTable[index2] = evictedValue; if (size++ >= threshold) resize(capacity << 1); return; } index3 = hash3(evictedKey); key3 = keyTable[index3]; if (key3 == EMPTY) { keyTable[index3] = evictedKey; valueTable[index3] = evictedValue; if (size++ >= threshold) resize(capacity << 1); return; } if (++i == pushIterations) break; insertKey = evictedKey; insertValue = evictedValue; } while (true); putStash(evictedKey, evictedValue); } private void putStash(int key, float value) { if (stashSize == stashCapacity) { // Too many pushes occurred and the stash is full, increase the table size. resize(capacity << 1); put(key, value); return; } // Store key in the stash. int index = capacity + stashSize; keyTable[index] = key; valueTable[index] = value; stashSize++; size++; } /** * @param defaultValue * Returned if the key was not associated with a value. */ public float get(int key, float defaultValue) { if (key == 0) return zeroValue; int index = key & mask; if (keyTable[index] != key) { index = hash2(key); if (keyTable[index] != key) { index = hash3(key); if (keyTable[index] != key) return getStash(key, defaultValue); } } return valueTable[index]; } private float getStash(int key, float defaultValue) { int[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) if (key == keyTable[i]) return valueTable[i]; return defaultValue; } /** * Returns the key's current value and increments the stored value. If the key is not in the map, defaultValue + * increment is put into the map. */ public float getAndIncrement(int key, float defaultValue, float increment) { int index = key & mask; if (key != keyTable[index]) { index = hash2(key); if (key != keyTable[index]) { index = hash3(key); if (key != keyTable[index]) return getAndIncrementStash(key, defaultValue, increment); } } float value = valueTable[index]; valueTable[index] = value + increment; return value; } private float getAndIncrementStash(int key, float defaultValue, float increment) { int[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) if (key == keyTable[i]) { float value = valueTable[i]; valueTable[i] = value + increment; return value; } put(key, defaultValue + increment); return defaultValue; } public float remove(int key, float defaultValue) { if (key == 0) { if (!hasZeroValue) return defaultValue; hasZeroValue = false; size--; return zeroValue; } int index = key & mask; if (key == keyTable[index]) { keyTable[index] = EMPTY; float oldValue = valueTable[index]; size--; return oldValue; } index = hash2(key); if (key == keyTable[index]) { keyTable[index] = EMPTY; float oldValue = valueTable[index]; size--; return oldValue; } index = hash3(key); if (key == keyTable[index]) { keyTable[index] = EMPTY; float oldValue = valueTable[index]; size--; return oldValue; } return removeStash(key, defaultValue); } float removeStash(int key, float defaultValue) { int[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) { if (key == keyTable[i]) { float oldValue = valueTable[i]; removeStashIndex(i); size--; return oldValue; } } return defaultValue; } void removeStashIndex(int index) { // If the removed location was not last, move the last tuple to the removed location. stashSize--; int lastIndex = capacity + stashSize; if (index < lastIndex) { keyTable[index] = keyTable[lastIndex]; valueTable[index] = valueTable[lastIndex]; } } public void clear() { int[] keyTable = this.keyTable; for (int i = capacity + stashSize; i-- > 0;) keyTable[i] = EMPTY; size = 0; stashSize = 0; } /** * Returns true if the specified value is in the map. Note this traverses the entire map and compares every value, * which may be an expensive operation. */ public boolean containsValue(float value) { if (hasZeroValue && zeroValue == value) return true; float[] valueTable = this.valueTable; for (int i = capacity + stashSize; i-- > 0;) if (valueTable[i] == value) return true; return false; } /** * Returns true if the specified value is in the map. Note this traverses the entire map and compares every value, * which may be an expensive operation. */ public boolean containsValue(float value, float epsilon) { if (hasZeroValue && zeroValue == value) return true; float[] valueTable = this.valueTable; for (int i = capacity + stashSize; i-- > 0;) if (Math.abs(valueTable[i] - value) <= epsilon) return true; return false; } public boolean containsKey(int key) { if (key == 0) return hasZeroValue; int index = key & mask; if (keyTable[index] != key) { index = hash2(key); if (keyTable[index] != key) { index = hash3(key); if (keyTable[index] != key) return containsKeyStash(key); } } return true; } private boolean containsKeyStash(int key) { int[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) if (key == keyTable[i]) return true; return false; } /** * Returns the key for the specified value, or null if it is not in the map. Note this traverses the entire map and * compares every value, which may be an expensive operation. */ public int findKey(float value, int notFound) { if (hasZeroValue && zeroValue == value) return 0; float[] valueTable = this.valueTable; for (int i = capacity + stashSize; i-- > 0;) if (valueTable[i] == value) return keyTable[i]; return notFound; } /** * Increases the size of the backing array to acommodate the specified number of additional items. Useful before * adding many items to avoid multiple backing array resizes. */ public void ensureCapacity(int additionalCapacity) { int sizeNeeded = size + additionalCapacity; if (sizeNeeded >= threshold) resize(MathUtils.nextPowerOfTwo((int) (sizeNeeded / loadFactor))); } private void resize(int newSize) { int oldEndIndex = capacity + stashSize; capacity = newSize; threshold = (int) (newSize * loadFactor); mask = newSize - 1; hashShift = 31 - Integer.numberOfTrailingZeros(newSize); stashCapacity = Math.max(3, (int) Math.ceil(Math.log(newSize)) * 2); pushIterations = Math.max(Math.min(newSize, 8), (int) Math.sqrt(newSize) / 8); int[] oldKeyTable = keyTable; float[] oldValueTable = valueTable; keyTable = new int[newSize + stashCapacity]; valueTable = new float[newSize + stashCapacity]; size = hasZeroValue ? 1 : 0; stashSize = 0; for (int i = 0; i < oldEndIndex; i++) { int key = oldKeyTable[i]; if (key != EMPTY) putResize(key, oldValueTable[i]); } } private int hash2(int h) { h *= PRIME2; return (h ^ h >>> hashShift) & mask; } private int hash3(int h) { h *= PRIME3; return (h ^ h >>> hashShift) & mask; } public String toString() { if (size == 0) return "{}"; StringBuilder buffer = new StringBuilder(32); buffer.append('{'); int[] keyTable = this.keyTable; float[] valueTable = this.valueTable; int i = keyTable.length; if (hasZeroValue) { buffer.append("0="); buffer.append(zeroValue); } else { while (i-- > 0) { int key = keyTable[i]; if (key == EMPTY) continue; buffer.append(key); buffer.append('='); buffer.append(valueTable[i]); break; } } while (i-- > 0) { int key = keyTable[i]; if (key == EMPTY) continue; buffer.append(", "); buffer.append(key); buffer.append('='); buffer.append(valueTable[i]); } buffer.append('}'); return buffer.toString(); } /** * Returns an iterator for the entries in the map. Remove is supported. Note that the same iterator instance is * returned each time this method is called. Use the {@link Entries} constructor for nested or multithreaded * iteration. */ public Entries entries() { if (entries == null) entries = new Entries(this); else entries.reset(); return entries; } /** * Returns an iterator for the values in the map. Remove is supported. Note that the same iterator instance is * returned each time this method is called. Use the {@link Entries} constructor for nested or multithreaded * iteration. */ public Values values() { if (values == null) values = new Values(this); else values.reset(); return values; } /** * Returns an iterator for the keys in the map. Remove is supported. Note that the same iterator instance is * returned each time this method is called. Use the {@link Entries} constructor for nested or multithreaded * iteration. */ public Keys keys() { if (keys == null) keys = new Keys(this); else keys.reset(); return keys; } static public class Entry<K> { public int key; public float value; public String toString() { return key + "=" + value; } } static private class MapIterator<K> { static final int INDEX_ILLEGAL = -2; static final int INDEX_ZERO = -1; public boolean hasNext; final IntFloatMap map; int nextIndex, currentIndex; public MapIterator(IntFloatMap map) { this.map = map; reset(); } public void reset() { currentIndex = INDEX_ILLEGAL; nextIndex = INDEX_ZERO; if (map.hasZeroValue) hasNext = true; else findNextIndex(); } void findNextIndex() { hasNext = false; int[] keyTable = map.keyTable; for (int n = map.capacity + map.stashSize; ++nextIndex < n;) { if (keyTable[nextIndex] != EMPTY) { hasNext = true; break; } } } public void remove() { if (currentIndex == INDEX_ZERO && map.hasZeroValue) { map.hasZeroValue = false; } else if (currentIndex < 0) { throw new IllegalStateException("next must be called before remove."); } else if (currentIndex >= map.capacity) { map.removeStashIndex(currentIndex); } else { map.keyTable[currentIndex] = EMPTY; } currentIndex = INDEX_ILLEGAL; map.size--; } } static public class Entries extends MapIterator implements Iterable<Entry>, Iterator<Entry> { private Entry entry = new Entry(); public Entries(IntFloatMap map) { super(map); } /** Note the same entry instance is returned each time this method is called. */ public Entry next() { if (!hasNext) throw new NoSuchElementException(); int[] keyTable = map.keyTable; if (nextIndex == INDEX_ZERO) { entry.key = 0; entry.value = map.zeroValue; } else { entry.key = keyTable[nextIndex]; entry.value = map.valueTable[nextIndex]; } currentIndex = nextIndex; findNextIndex(); return entry; } public boolean hasNext() { return hasNext; } public Iterator<Entry> iterator() { return this; } } static public class Values extends MapIterator<Object> { public Values(IntFloatMap map) { super(map); } public boolean hasNext() { return hasNext; } public float next() { float value; if (nextIndex == INDEX_ZERO) value = map.zeroValue; else value = map.valueTable[nextIndex]; currentIndex = nextIndex; findNextIndex(); return value; } /** Returns a new array containing the remaining values. */ public FloatArray toArray() { FloatArray array = new FloatArray(true, map.size); while (hasNext) array.add(next()); return array; } } static public class Keys extends MapIterator { public Keys(IntFloatMap map) { super(map); } public boolean hasNext() { return hasNext; } public int next() { int key = nextIndex == INDEX_ZERO ? 0 : map.keyTable[nextIndex]; currentIndex = nextIndex; findNextIndex(); return key; } /** Returns a new array containing the remaining keys. */ public IntArray toArray() { IntArray array = new IntArray(true, map.size); while (hasNext) array.add(next()); return array; } } }