/* * $RCSfile: Vector2d.java,v $ * * Copyright 1998-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * $Revision: 1.5 $ * $Date: 2008/02/28 20:18:51 $ * $State: Exp $ */ package javax.vecmath; import java.lang.Math; /** * A 2-element vector that is represented by double-precision floating point x,y * coordinates. * */ public class Vector2d extends Tuple2d implements java.io.Serializable { // Combatible with 1.1 static final long serialVersionUID = 8572646365302599857L; /** * Constructs and initializes a Vector2d from the specified xy coordinates. * * @param x * the x coordinate * @param y * the y coordinate */ public Vector2d(double x, double y) { super(x, y); } /** * Constructs and initializes a Vector2d from the specified array. * * @param v * the array of length 2 containing xy in order */ public Vector2d(double[] v) { super(v); } /** * Constructs and initializes a Vector2d from the specified Vector2d. * * @param v1 * the Vector2d containing the initialization x y data */ public Vector2d(Vector2d v1) { super(v1); } /** * Constructs and initializes a Vector2d from the specified Vector2f. * * @param v1 * the Vector2f containing the initialization x y data */ public Vector2d(Vector2f v1) { super(v1); } /** * Constructs and initializes a Vector2d from the specified Tuple2d. * * @param t1 * the Tuple2d containing the initialization x y data */ public Vector2d(Tuple2d t1) { super(t1); } /** * Constructs and initializes a Vector2d from the specified Tuple2f. * * @param t1 * the Tuple2f containing the initialization x y data */ public Vector2d(Tuple2f t1) { super(t1); } /** * Constructs and initializes a Vector2d to (0,0). */ public Vector2d() { super(); } /** * Computes the dot product of the this vector and vector v1. * * @param v1 * the other vector */ public final double dot(Vector2d v1) { return (this.x * v1.x + this.y * v1.y); } /** * Returns the length of this vector. * * @return the length of this vector */ public final double length() { return (double) Math.sqrt(this.x * this.x + this.y * this.y); } /** * Returns the squared length of this vector. * * @return the squared length of this vector */ public final double lengthSquared() { return (this.x * this.x + this.y * this.y); } /** * Sets the value of this vector to the normalization of vector v1. * * @param v1 * the un-normalized vector */ public final void normalize(Vector2d v1) { double norm; norm = (double) (1.0 / Math.sqrt(v1.x * v1.x + v1.y * v1.y)); this.x = v1.x * norm; this.y = v1.y * norm; } /** * Normalizes this vector in place. */ public final void normalize() { double norm; norm = (double) (1.0 / Math.sqrt(this.x * this.x + this.y * this.y)); this.x *= norm; this.y *= norm; } /** * Returns the angle in radians between this vector and the vector parameter; * the return value is constrained to the range [0,PI]. * * @param v1 * the other vector * @return the angle in radians in the range [0,PI] */ public final double angle(Vector2d v1) { double vDot = this.dot(v1) / (this.length() * v1.length()); if (vDot < -1.0) vDot = -1.0; if (vDot > 1.0) vDot = 1.0; return ((double) (Math.acos(vDot))); } }