/* * $RCSfile: Quat4f.java,v $ * * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * $Revision: 1.6 $ * $Date: 2008/02/28 20:18:50 $ * $State: Exp $ */ package javax.vecmath; import java.lang.Math; /** * A 4 element unit quaternion represented by single precision floating point * x,y,z,w coordinates. The quaternion is always normalized. * */ public class Quat4f extends Tuple4f implements java.io.Serializable { // Combatible with 1.1 static final long serialVersionUID = 2675933778405442383L; final static double EPS = 0.000001; final static double EPS2 = 1.0e-30; final static double PIO2 = 1.57079632679; /** * Constructs and initializes a Quat4f from the specified xyzw coordinates. * * @param x * the x coordinate * @param y * the y coordinate * @param z * the z coordinate * @param w * the w scalar component */ public Quat4f(float x, float y, float z, float w) { float mag; mag = (float) (1.0 / Math.sqrt(x * x + y * y + z * z + w * w)); this.x = x * mag; this.y = y * mag; this.z = z * mag; this.w = w * mag; } /** * Constructs and initializes a Quat4f from the array of length 4. * * @param q * the array of length 4 containing xyzw in order */ public Quat4f(float[] q) { float mag; mag = (float) (1.0 / Math.sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3])); x = q[0] * mag; y = q[1] * mag; z = q[2] * mag; w = q[3] * mag; } /** * Constructs and initializes a Quat4f from the specified Quat4f. * * @param q1 * the Quat4f containing the initialization x y z w data */ public Quat4f(Quat4f q1) { super(q1); } /** * Constructs and initializes a Quat4f from the specified Quat4d. * * @param q1 * the Quat4d containing the initialization x y z w data */ public Quat4f(Quat4d q1) { super(q1); } /** * Constructs and initializes a Quat4f from the specified Tuple4f. * * @param t1 * the Tuple4f containing the initialization x y z w data */ public Quat4f(Tuple4f t1) { float mag; mag = (float) (1.0 / Math.sqrt(t1.x * t1.x + t1.y * t1.y + t1.z * t1.z + t1.w * t1.w)); x = t1.x * mag; y = t1.y * mag; z = t1.z * mag; w = t1.w * mag; } /** * Constructs and initializes a Quat4f from the specified Tuple4d. * * @param t1 * the Tuple4d containing the initialization x y z w data */ public Quat4f(Tuple4d t1) { double mag; mag = 1.0 / Math .sqrt(t1.x * t1.x + t1.y * t1.y + t1.z * t1.z + t1.w * t1.w); x = (float) (t1.x * mag); y = (float) (t1.y * mag); z = (float) (t1.z * mag); w = (float) (t1.w * mag); } /** * Constructs and initializes a Quat4f to (0.0,0.0,0.0,0.0). */ public Quat4f() { super(); } /** * Sets the value of this quaternion to the conjugate of quaternion q1. * * @param q1 * the source vector */ public final void conjugate(Quat4f q1) { this.x = -q1.x; this.y = -q1.y; this.z = -q1.z; this.w = q1.w; } /** * Sets the value of this quaternion to the conjugate of itself. */ public final void conjugate() { this.x = -this.x; this.y = -this.y; this.z = -this.z; } /** * Sets the value of this quaternion to the quaternion product of quaternions * q1 and q2 (this = q1 * q2). Note that this is safe for aliasing (e.g. this * can be q1 or q2). * * @param q1 * the first quaternion * @param q2 * the second quaternion */ public final void mul(Quat4f q1, Quat4f q2) { if (this != q1 && this != q2) { this.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z; this.x = q1.w * q2.x + q2.w * q1.x + q1.y * q2.z - q1.z * q2.y; this.y = q1.w * q2.y + q2.w * q1.y - q1.x * q2.z + q1.z * q2.x; this.z = q1.w * q2.z + q2.w * q1.z + q1.x * q2.y - q1.y * q2.x; } else { float x, y, w; w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z; x = q1.w * q2.x + q2.w * q1.x + q1.y * q2.z - q1.z * q2.y; y = q1.w * q2.y + q2.w * q1.y - q1.x * q2.z + q1.z * q2.x; this.z = q1.w * q2.z + q2.w * q1.z + q1.x * q2.y - q1.y * q2.x; this.w = w; this.x = x; this.y = y; } } /** * Sets the value of this quaternion to the quaternion product of itself and * q1 (this = this * q1). * * @param q1 * the other quaternion */ public final void mul(Quat4f q1) { float x, y, w; w = this.w * q1.w - this.x * q1.x - this.y * q1.y - this.z * q1.z; x = this.w * q1.x + q1.w * this.x + this.y * q1.z - this.z * q1.y; y = this.w * q1.y + q1.w * this.y - this.x * q1.z + this.z * q1.x; this.z = this.w * q1.z + q1.w * this.z + this.x * q1.y - this.y * q1.x; this.w = w; this.x = x; this.y = y; } /** * Multiplies quaternion q1 by the inverse of quaternion q2 and places the * value into this quaternion. The value of both argument quaternions is * preservered (this = q1 * q2^-1). * * @param q1 * the first quaternion * @param q2 * the second quaternion */ public final void mulInverse(Quat4f q1, Quat4f q2) { Quat4f tempQuat = new Quat4f(q2); tempQuat.inverse(); this.mul(q1, tempQuat); } /** * Multiplies this quaternion by the inverse of quaternion q1 and places the * value into this quaternion. The value of the argument quaternion is * preserved (this = this * q^-1). * * @param q1 * the other quaternion */ public final void mulInverse(Quat4f q1) { Quat4f tempQuat = new Quat4f(q1); tempQuat.inverse(); this.mul(tempQuat); } /** * Sets the value of this quaternion to quaternion inverse of quaternion q1. * * @param q1 * the quaternion to be inverted */ public final void inverse(Quat4f q1) { float norm; norm = 1.0f / (q1.w * q1.w + q1.x * q1.x + q1.y * q1.y + q1.z * q1.z); this.w = norm * q1.w; this.x = -norm * q1.x; this.y = -norm * q1.y; this.z = -norm * q1.z; } /** * Sets the value of this quaternion to the quaternion inverse of itself. */ public final void inverse() { float norm; norm = 1.0f / (this.w * this.w + this.x * this.x + this.y * this.y + this.z * this.z); this.w *= norm; this.x *= -norm; this.y *= -norm; this.z *= -norm; } /** * Sets the value of this quaternion to the normalized value of quaternion q1. * * @param q1 * the quaternion to be normalized. */ public final void normalize(Quat4f q1) { float norm; norm = (q1.x * q1.x + q1.y * q1.y + q1.z * q1.z + q1.w * q1.w); if (norm > 0.0f) { norm = 1.0f / (float) Math.sqrt(norm); this.x = norm * q1.x; this.y = norm * q1.y; this.z = norm * q1.z; this.w = norm * q1.w; } else { this.x = (float) 0.0; this.y = (float) 0.0; this.z = (float) 0.0; this.w = (float) 0.0; } } /** * Normalizes the value of this quaternion in place. */ public final void normalize() { float norm; norm = (this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w); if (norm > 0.0f) { norm = 1.0f / (float) Math.sqrt(norm); this.x *= norm; this.y *= norm; this.z *= norm; this.w *= norm; } else { this.x = (float) 0.0; this.y = (float) 0.0; this.z = (float) 0.0; this.w = (float) 0.0; } } /** * Sets the value of this quaternion to the rotational component of the passed * matrix. * * @param m1 * the Matrix4f */ public final void set(Matrix4f m1) { float ww = 0.25f * (m1.m00 + m1.m11 + m1.m22 + m1.m33); if (ww >= 0) { if (ww >= EPS2) { this.w = (float) Math.sqrt((double) ww); ww = 0.25f / this.w; this.x = (m1.m21 - m1.m12) * ww; this.y = (m1.m02 - m1.m20) * ww; this.z = (m1.m10 - m1.m01) * ww; return; } } else { this.w = 0; this.x = 0; this.y = 0; this.z = 1; return; } this.w = 0; ww = -0.5f * (m1.m11 + m1.m22); if (ww >= 0) { if (ww >= EPS2) { this.x = (float) Math.sqrt((double) ww); ww = 1.0f / (2.0f * this.x); this.y = m1.m10 * ww; this.z = m1.m20 * ww; return; } } else { this.x = 0; this.y = 0; this.z = 1; return; } this.x = 0; ww = 0.5f * (1.0f - m1.m22); if (ww >= EPS2) { this.y = (float) Math.sqrt((double) ww); this.z = m1.m21 / (2.0f * this.y); return; } this.y = 0; this.z = 1; } /** * Sets the value of this quaternion to the rotational component of the passed * matrix. * * @param m1 * the Matrix4d */ public final void set(Matrix4d m1) { double ww = 0.25 * (m1.m00 + m1.m11 + m1.m22 + m1.m33); if (ww >= 0) { if (ww >= EPS2) { this.w = (float) Math.sqrt(ww); ww = 0.25 / this.w; this.x = (float) ((m1.m21 - m1.m12) * ww); this.y = (float) ((m1.m02 - m1.m20) * ww); this.z = (float) ((m1.m10 - m1.m01) * ww); return; } } else { this.w = 0; this.x = 0; this.y = 0; this.z = 1; return; } this.w = 0; ww = -0.5 * (m1.m11 + m1.m22); if (ww >= 0) { if (ww >= EPS2) { this.x = (float) Math.sqrt(ww); ww = 0.5 / this.x; this.y = (float) (m1.m10 * ww); this.z = (float) (m1.m20 * ww); return; } } else { this.x = 0; this.y = 0; this.z = 1; return; } this.x = 0; ww = 0.5 * (1.0 - m1.m22); if (ww >= EPS2) { this.y = (float) Math.sqrt(ww); this.z = (float) (m1.m21 / (2.0 * (double) (this.y))); return; } this.y = 0; this.z = 1; } /** * Sets the value of this quaternion to the rotational component of the passed * matrix. * * @param m1 * the Matrix3f */ public final void set(Matrix3f m1) { float ww = 0.25f * (m1.m00 + m1.m11 + m1.m22 + 1.0f); if (ww >= 0) { if (ww >= EPS2) { this.w = (float) Math.sqrt((double) ww); ww = 0.25f / this.w; this.x = (m1.m21 - m1.m12) * ww; this.y = (m1.m02 - m1.m20) * ww; this.z = (m1.m10 - m1.m01) * ww; return; } } else { this.w = 0; this.x = 0; this.y = 0; this.z = 1; return; } this.w = 0; ww = -0.5f * (m1.m11 + m1.m22); if (ww >= 0) { if (ww >= EPS2) { this.x = (float) Math.sqrt((double) ww); ww = 0.5f / this.x; this.y = m1.m10 * ww; this.z = m1.m20 * ww; return; } } else { this.x = 0; this.y = 0; this.z = 1; return; } this.x = 0; ww = 0.5f * (1.0f - m1.m22); if (ww >= EPS2) { this.y = (float) Math.sqrt((double) ww); this.z = m1.m21 / (2.0f * this.y); return; } this.y = 0; this.z = 1; } /** * Sets the value of this quaternion to the rotational component of the passed * matrix. * * @param m1 * the Matrix3d */ public final void set(Matrix3d m1) { double ww = 0.25 * (m1.m00 + m1.m11 + m1.m22 + 1.0f); if (ww >= 0) { if (ww >= EPS2) { this.w = (float) Math.sqrt(ww); ww = 0.25 / this.w; this.x = (float) ((m1.m21 - m1.m12) * ww); this.y = (float) ((m1.m02 - m1.m20) * ww); this.z = (float) ((m1.m10 - m1.m01) * ww); return; } } else { this.w = 0; this.x = 0; this.y = 0; this.z = 1; return; } this.w = 0; ww = -0.5 * (m1.m11 + m1.m22); if (ww >= 0) { if (ww >= EPS2) { this.x = (float) Math.sqrt(ww); ww = 0.5 / this.x; this.y = (float) (m1.m10 * ww); this.z = (float) (m1.m20 * ww); return; } } else { this.x = 0; this.y = 0; this.z = 1; return; } this.x = 0; ww = 0.5 * (1.0 - m1.m22); if (ww >= EPS2) { this.y = (float) Math.sqrt(ww); this.z = (float) (m1.m21 / (2.0 * (double) (this.y))); return; } this.y = 0; this.z = 1; } /** * Sets the value of this quaternion to the equivalent rotation of the * AxisAngle argument. * * @param a * the AxisAngle to be emulated */ public final void set(AxisAngle4f a) { float mag, amag; // Quat = cos(theta/2) + sin(theta/2)(roation_axis) amag = (float) Math.sqrt(a.x * a.x + a.y * a.y + a.z * a.z); if (amag < EPS) { w = 0.0f; x = 0.0f; y = 0.0f; z = 0.0f; } else { amag = 1.0f / amag; mag = (float) Math.sin(a.angle / 2.0); w = (float) Math.cos(a.angle / 2.0); x = a.x * amag * mag; y = a.y * amag * mag; z = a.z * amag * mag; } } /** * Sets the value of this quaternion to the equivalent rotation of the * AxisAngle argument. * * @param a * the AxisAngle to be emulated */ public final void set(AxisAngle4d a) { float mag, amag; // Quat = cos(theta/2) + sin(theta/2)(roation_axis) amag = (float) (1.0 / Math.sqrt(a.x * a.x + a.y * a.y + a.z * a.z)); if (amag < EPS) { w = 0.0f; x = 0.0f; y = 0.0f; z = 0.0f; } else { amag = 1.0f / amag; mag = (float) Math.sin(a.angle / 2.0); w = (float) Math.cos(a.angle / 2.0); x = (float) a.x * amag * mag; y = (float) a.y * amag * mag; z = (float) a.z * amag * mag; } } /** * Performs a great circle interpolation between this quaternion and the * quaternion parameter and places the result into this quaternion. * * @param q1 * the other quaternion * @param alpha * the alpha interpolation parameter */ public final void interpolate(Quat4f q1, float alpha) { // From "Advanced Animation and Rendering Techniques" // by Watt and Watt pg. 364, function as implemented appeared to be // incorrect. Fails to choose the same quaternion for the double // covering. Resulting in change of direction for rotations. // Fixed function to negate the first quaternion in the case that the // dot product of q1 and this is negative. Second case was not needed. double dot, s1, s2, om, sinom; dot = x * q1.x + y * q1.y + z * q1.z + w * q1.w; if (dot < 0) { // negate quaternion q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w; dot = -dot; } if ((1.0 - dot) > EPS) { om = Math.acos(dot); sinom = Math.sin(om); s1 = Math.sin((1.0 - alpha) * om) / sinom; s2 = Math.sin(alpha * om) / sinom; } else { s1 = 1.0 - alpha; s2 = alpha; } w = (float) (s1 * w + s2 * q1.w); x = (float) (s1 * x + s2 * q1.x); y = (float) (s1 * y + s2 * q1.y); z = (float) (s1 * z + s2 * q1.z); } /** * Performs a great circle interpolation between quaternion q1 and quaternion * q2 and places the result into this quaternion. * * @param q1 * the first quaternion * @param q2 * the second quaternion * @param alpha * the alpha interpolation parameter */ public final void interpolate(Quat4f q1, Quat4f q2, float alpha) { // From "Advanced Animation and Rendering Techniques" // by Watt and Watt pg. 364, function as implemented appeared to be // incorrect. Fails to choose the same quaternion for the double // covering. Resulting in change of direction for rotations. // Fixed function to negate the first quaternion in the case that the // dot product of q1 and this is negative. Second case was not needed. double dot, s1, s2, om, sinom; dot = q2.x * q1.x + q2.y * q1.y + q2.z * q1.z + q2.w * q1.w; if (dot < 0) { // negate quaternion q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w; dot = -dot; } if ((1.0 - dot) > EPS) { om = Math.acos(dot); sinom = Math.sin(om); s1 = Math.sin((1.0 - alpha) * om) / sinom; s2 = Math.sin(alpha * om) / sinom; } else { s1 = 1.0 - alpha; s2 = alpha; } w = (float) (s1 * q1.w + s2 * q2.w); x = (float) (s1 * q1.x + s2 * q2.x); y = (float) (s1 * q1.y + s2 * q2.y); z = (float) (s1 * q1.z + s2 * q2.z); } }