/* * Java port of Bullet (c) 2008 Martin Dvorak <jezek2@advel.cz> * * Bullet Continuous Collision Detection and Physics Library * Copyright (c) 2003-2008 Erwin Coumans http://www.bulletphysics.com/ * * This software is provided 'as-is', without any express or implied warranty. * In no event will the authors be held liable for any damages arising from * the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ package com.bulletphysics.collision.narrowphase; import com.bulletphysics.collision.shapes.TriangleCallback; import com.bulletphysics.linearmath.VectorUtil; import com.bulletphysics.util.Stack; import javax.vecmath.Vector3f; /** * * @author jezek2 */ public abstract class TriangleRaycastCallback extends TriangleCallback { //protected final BulletStack stack = BulletStack.get(); public final Vector3f from = new Vector3f(); public final Vector3f to = new Vector3f(); public float hitFraction; public TriangleRaycastCallback(Vector3f from, Vector3f to) { this.from.set(from); this.to.set(to); this.hitFraction = 1f; } public void processTriangle(Vector3f[] triangle, int partId, int triangleIndex) { Stack stack = Stack.enter(); Vector3f vert0 = triangle[0]; Vector3f vert1 = triangle[1]; Vector3f vert2 = triangle[2]; Vector3f v10 = stack.allocVector3f(); v10.sub(vert1, vert0); Vector3f v20 = stack.allocVector3f(); v20.sub(vert2, vert0); Vector3f triangleNormal = stack.allocVector3f(); triangleNormal.cross(v10, v20); float dist = vert0.dot(triangleNormal); float dist_a = triangleNormal.dot(from); dist_a -= dist; float dist_b = triangleNormal.dot(to); dist_b -= dist; if (dist_a * dist_b >= 0f) { stack.leave(); return; // same sign } float proj_length = dist_a - dist_b; float distance = (dist_a) / (proj_length); // Now we have the intersection point on the plane, we'll see if it's inside the triangle // Add an epsilon as a tolerance for the raycast, // in case the ray hits exacly on the edge of the triangle. // It must be scaled for the triangle size. if (distance < hitFraction) { float edge_tolerance = triangleNormal.lengthSquared(); edge_tolerance *= -0.0001f; Vector3f point = new Vector3f(); VectorUtil.setInterpolate3(point, from, to, distance); { Vector3f v0p = stack.allocVector3f(); v0p.sub(vert0, point); Vector3f v1p = stack.allocVector3f(); v1p.sub(vert1, point); Vector3f cp0 = stack.allocVector3f(); cp0.cross(v0p, v1p); if (cp0.dot(triangleNormal) >= edge_tolerance) { Vector3f v2p = stack.allocVector3f(); v2p.sub(vert2, point); Vector3f cp1 = stack.allocVector3f(); cp1.cross(v1p, v2p); if (cp1.dot(triangleNormal) >= edge_tolerance) { Vector3f cp2 = stack.allocVector3f(); cp2.cross(v2p, v0p); if (cp2.dot(triangleNormal) >= edge_tolerance) { if (dist_a > 0f) { hitFraction = reportHit(triangleNormal, distance, partId, triangleIndex); } else { Vector3f tmp = stack.allocVector3f(); tmp.negate(triangleNormal); hitFraction = reportHit(tmp, distance, partId, triangleIndex); } } } } } } stack.leave(); } public abstract float reportHit(Vector3f hitNormalLocal, float hitFraction, int partId, int triangleIndex ); }