/* * Java port of Bullet (c) 2008 Martin Dvorak <jezek2@advel.cz> * * Bullet Continuous Collision Detection and Physics Library * Copyright (c) 2003-2008 Erwin Coumans http://www.bulletphysics.com/ * * This software is provided 'as-is', without any express or implied warranty. * In no event will the authors be held liable for any damages arising from * the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ package com.bulletphysics.collision.dispatch; import com.bulletphysics.collision.narrowphase.PersistentManifold; import com.bulletphysics.collision.broadphase.CollisionAlgorithm; import com.bulletphysics.collision.broadphase.CollisionAlgorithmConstructionInfo; import com.bulletphysics.collision.broadphase.DispatcherInfo; import com.bulletphysics.collision.shapes.CollisionShape; import com.bulletphysics.collision.shapes.CompoundShape; import com.bulletphysics.linearmath.Transform; import com.bulletphysics.util.ObjectArrayList; import com.bulletphysics.util.ObjectPool; import com.bulletphysics.util.Stack; import com.bulletphysics.util.Supplier; /** * CompoundCollisionAlgorithm supports collision between {@link CompoundShape}s and * other collision shapes. * * @author jezek2 */ public class CompoundCollisionAlgorithm extends CollisionAlgorithm { private final ObjectArrayList<CollisionAlgorithm> childCollisionAlgorithms = new ObjectArrayList<CollisionAlgorithm>(); private boolean isSwapped; public void init(CollisionAlgorithmConstructionInfo ci, CollisionObject body0, CollisionObject body1, boolean isSwapped) { super.init(ci); this.isSwapped = isSwapped; CollisionObject colObj = isSwapped ? body1 : body0; CollisionObject otherObj = isSwapped ? body0 : body1; assert (colObj.getCollisionShape().isCompound()); CompoundShape compoundShape = (CompoundShape) colObj.getCollisionShape(); int numChildren = compoundShape.getNumChildShapes(); int i; //childCollisionAlgorithms.resize(numChildren); for (i = 0; i < numChildren; i++) { CollisionShape tmpShape = colObj.getCollisionShape(); CollisionShape childShape = compoundShape.getChildShape(i); colObj.internalSetTemporaryCollisionShape(childShape); childCollisionAlgorithms.add(ci.dispatcher1.findAlgorithm(colObj, otherObj)); colObj.internalSetTemporaryCollisionShape(tmpShape); } } @Override public void destroy() { int numChildren = childCollisionAlgorithms.size(); for (int i=0; i<numChildren; i++) { //childCollisionAlgorithms.get(i).destroy(); dispatcher.freeCollisionAlgorithm(childCollisionAlgorithms.getQuick(i)); } childCollisionAlgorithms.clear(); } @Override public void processCollision(CollisionObject body0, CollisionObject body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut) { Stack stack = Stack.enter(); CollisionObject colObj = isSwapped ? body1 : body0; CollisionObject otherObj = isSwapped ? body0 : body1; assert (colObj.getCollisionShape().isCompound()); CompoundShape compoundShape = (CompoundShape) colObj.getCollisionShape(); // We will use the OptimizedBVH, AABB tree to cull potential child-overlaps // If both proxies are Compound, we will deal with that directly, by performing sequential/parallel tree traversals // given Proxy0 and Proxy1, if both have a tree, Tree0 and Tree1, this means: // determine overlapping nodes of Proxy1 using Proxy0 AABB against Tree1 // then use each overlapping node AABB against Tree0 // and vise versa. Transform tmpTrans = stack.allocTransform(); Transform orgTrans = stack.allocTransform(); Transform childTrans = stack.allocTransform(); Transform orgInterpolationTrans = stack.allocTransform(); Transform newChildWorldTrans = stack.allocTransform(); int numChildren = childCollisionAlgorithms.size(); int i; for (i = 0; i < numChildren; i++) { // temporarily exchange parent btCollisionShape with childShape, and recurse CollisionShape childShape = compoundShape.getChildShape(i); // backup colObj.getWorldTransform(orgTrans); colObj.getInterpolationWorldTransform(orgInterpolationTrans); compoundShape.getChildTransform(i, childTrans); newChildWorldTrans.mul(orgTrans, childTrans); colObj.setWorldTransform(newChildWorldTrans); colObj.setInterpolationWorldTransform(newChildWorldTrans); // the contactpoint is still projected back using the original inverted worldtrans CollisionShape tmpShape = colObj.getCollisionShape(); colObj.internalSetTemporaryCollisionShape(childShape); childCollisionAlgorithms.getQuick(i).processCollision(colObj, otherObj, dispatchInfo, resultOut); // revert back colObj.internalSetTemporaryCollisionShape(tmpShape); colObj.setWorldTransform(orgTrans); colObj.setInterpolationWorldTransform(orgInterpolationTrans); } stack.leave(); } @Override public float calculateTimeOfImpact(CollisionObject body0, CollisionObject body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut) { Stack stack = Stack.enter(); CollisionObject colObj = isSwapped ? body1 : body0; CollisionObject otherObj = isSwapped ? body0 : body1; assert (colObj.getCollisionShape().isCompound()); CompoundShape compoundShape = (CompoundShape) colObj.getCollisionShape(); // We will use the OptimizedBVH, AABB tree to cull potential child-overlaps // If both proxies are Compound, we will deal with that directly, by performing sequential/parallel tree traversals // given Proxy0 and Proxy1, if both have a tree, Tree0 and Tree1, this means: // determine overlapping nodes of Proxy1 using Proxy0 AABB against Tree1 // then use each overlapping node AABB against Tree0 // and vise versa. Transform tmpTrans = stack.allocTransform(); Transform orgTrans = stack.allocTransform(); Transform childTrans = stack.allocTransform(); float hitFraction = 1f; int numChildren = childCollisionAlgorithms.size(); int i; for (i = 0; i < numChildren; i++) { // temporarily exchange parent btCollisionShape with childShape, and recurse CollisionShape childShape = compoundShape.getChildShape(i); // backup colObj.getWorldTransform(orgTrans); compoundShape.getChildTransform(i, childTrans); //btTransform newChildWorldTrans = orgTrans*childTrans ; tmpTrans.set(orgTrans); tmpTrans.mul(childTrans); colObj.setWorldTransform(tmpTrans); CollisionShape tmpShape = colObj.getCollisionShape(); colObj.internalSetTemporaryCollisionShape(childShape); float frac = childCollisionAlgorithms.getQuick(i).calculateTimeOfImpact(colObj, otherObj, dispatchInfo, resultOut); if (frac < hitFraction) { hitFraction = frac; } // revert back colObj.internalSetTemporaryCollisionShape(tmpShape); colObj.setWorldTransform(orgTrans); } stack.leave(); return hitFraction; } @Override public void getAllContactManifolds(ObjectArrayList<PersistentManifold> manifoldArray) { for (int i=0; i<childCollisionAlgorithms.size(); i++) { childCollisionAlgorithms.getQuick(i).getAllContactManifolds(manifoldArray); } } //////////////////////////////////////////////////////////////////////////// public static class CreateFunc extends CollisionAlgorithmCreateFunc { private final ObjectPool<CompoundCollisionAlgorithm> pool = ObjectPool.get(CompoundCollisionAlgorithm.class, new Supplier<CompoundCollisionAlgorithm>() { @Override public CompoundCollisionAlgorithm get() { return new CompoundCollisionAlgorithm(); } }); @Override public CollisionAlgorithm createCollisionAlgorithm(CollisionAlgorithmConstructionInfo ci, CollisionObject body0, CollisionObject body1) { CompoundCollisionAlgorithm algo = pool.get(); algo.init(ci, body0, body1, false); return algo; } @Override public void releaseCollisionAlgorithm(CollisionAlgorithm algo) { pool.release((CompoundCollisionAlgorithm)algo); } }; public static class SwappedCreateFunc extends CollisionAlgorithmCreateFunc { private final ObjectPool<CompoundCollisionAlgorithm> pool = ObjectPool.get(CompoundCollisionAlgorithm.class, new Supplier<CompoundCollisionAlgorithm>() { @Override public CompoundCollisionAlgorithm get() { return new CompoundCollisionAlgorithm(); }}); @Override public CollisionAlgorithm createCollisionAlgorithm(CollisionAlgorithmConstructionInfo ci, CollisionObject body0, CollisionObject body1) { CompoundCollisionAlgorithm algo = pool.get(); algo.init(ci, body0, body1, true); return algo; } @Override public void releaseCollisionAlgorithm(CollisionAlgorithm algo) { pool.release((CompoundCollisionAlgorithm)algo); } }; }