/* * Java port of Bullet (c) 2008 Martin Dvorak <jezek2@advel.cz> * * Bullet Continuous Collision Detection and Physics Library * Copyright (c) 2003-2008 Erwin Coumans http://www.bulletphysics.com/ * * This software is provided 'as-is', without any express or implied warranty. * In no event will the authors be held liable for any damages arising from * the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ package com.bulletphysics.linearmath; import javax.vecmath.Matrix3f; import javax.vecmath.Vector3f; import com.bulletphysics.util.Stack; /** * Utility functions for axis aligned bounding boxes (AABB). * * @author jezek2 */ public class AabbUtil2 { public static void aabbExpand(Vector3f aabbMin, Vector3f aabbMax, Vector3f expansionMin, Vector3f expansionMax) { aabbMin.add(expansionMin); aabbMax.add(expansionMax); } public static int outcode(Vector3f p, Vector3f halfExtent) { return (p.x < -halfExtent.x ? 0x01 : 0x0) | (p.x > halfExtent.x ? 0x08 : 0x0) | (p.y < -halfExtent.y ? 0x02 : 0x0) | (p.y > halfExtent.y ? 0x10 : 0x0) | (p.z < -halfExtent.z ? 0x4 : 0x0) | (p.z > halfExtent.z ? 0x20 : 0x0); } public static boolean rayAabb(Vector3f rayFrom, Vector3f rayTo, Vector3f aabbMin, Vector3f aabbMax, float[] param, Vector3f normal) { Stack stack = Stack.enter(); Vector3f aabbHalfExtent = stack.allocVector3f(); Vector3f aabbCenter = stack.allocVector3f(); Vector3f source = stack.allocVector3f(); Vector3f target = stack.allocVector3f(); Vector3f r = stack.allocVector3f(); Vector3f hitNormal = stack.allocVector3f(); aabbHalfExtent.sub(aabbMax, aabbMin); aabbHalfExtent.scale(0.5f); aabbCenter.add(aabbMax, aabbMin); aabbCenter.scale(0.5f); source.sub(rayFrom, aabbCenter); target.sub(rayTo, aabbCenter); int sourceOutcode = outcode(source, aabbHalfExtent); int targetOutcode = outcode(target, aabbHalfExtent); if ((sourceOutcode & targetOutcode) == 0x0) { float lambda_enter = 0f; float lambda_exit = param[0]; r.sub(target, source); float normSign = 1f; hitNormal.set(0f, 0f, 0f); int bit = 1; for (int j = 0; j < 2; j++) { for (int i = 0; i != 3; ++i) { if ((sourceOutcode & bit) != 0) { float lambda = (-VectorUtil.getCoord(source, i) - VectorUtil.getCoord(aabbHalfExtent, i) * normSign) / VectorUtil.getCoord(r, i); if (lambda_enter <= lambda) { lambda_enter = lambda; hitNormal.set(0f, 0f, 0f); VectorUtil.setCoord(hitNormal, i, normSign); } } else if ((targetOutcode & bit) != 0) { float lambda = (-VectorUtil.getCoord(source, i) - VectorUtil.getCoord(aabbHalfExtent, i) * normSign) / VectorUtil.getCoord(r, i); //btSetMin(lambda_exit, lambda); lambda_exit = Math.min(lambda_exit, lambda); } bit <<= 1; } normSign = -1f; } if (lambda_enter <= lambda_exit) { param[0] = lambda_enter; normal.set(hitNormal); stack.leave(); return true; } } stack.leave(); return false; } /** * Conservative test for overlap between two AABBs. */ public static boolean testAabbAgainstAabb2(Vector3f aabbMin1, Vector3f aabbMax1, Vector3f aabbMin2, Vector3f aabbMax2) { boolean overlap = true; overlap = (aabbMin1.x > aabbMax2.x || aabbMax1.x < aabbMin2.x) ? false : overlap; overlap = (aabbMin1.z > aabbMax2.z || aabbMax1.z < aabbMin2.z) ? false : overlap; overlap = (aabbMin1.y > aabbMax2.y || aabbMax1.y < aabbMin2.y) ? false : overlap; return overlap; } /** * Conservative test for overlap between triangle and AABB. */ public static boolean testTriangleAgainstAabb2(Vector3f[] vertices, Vector3f aabbMin, Vector3f aabbMax) { Vector3f p1 = vertices[0]; Vector3f p2 = vertices[1]; Vector3f p3 = vertices[2]; if (Math.min(Math.min(p1.x, p2.x), p3.x) > aabbMax.x) return false; if (Math.max(Math.max(p1.x, p2.x), p3.x) < aabbMin.x) return false; if (Math.min(Math.min(p1.z, p2.z), p3.z) > aabbMax.z) return false; if (Math.max(Math.max(p1.z, p2.z), p3.z) < aabbMin.z) return false; if (Math.min(Math.min(p1.y, p2.y), p3.y) > aabbMax.y) return false; if (Math.max(Math.max(p1.y, p2.y), p3.y) < aabbMin.y) return false; return true; } public static void transformAabb(Vector3f halfExtents, float margin, Transform t, Vector3f aabbMinOut, Vector3f aabbMaxOut) { Stack stack = Stack.enter(); Vector3f halfExtentsWithMargin = stack.allocVector3f(); halfExtentsWithMargin.x = halfExtents.x + margin; halfExtentsWithMargin.y = halfExtents.y + margin; halfExtentsWithMargin.z = halfExtents.z + margin; Matrix3f abs_b = stack.alloc(t.basis); MatrixUtil.absolute(abs_b); Vector3f tmp = stack.allocVector3f(); Vector3f center = stack.alloc(t.origin); Vector3f extent = stack.allocVector3f(); abs_b.getRow(0, tmp); extent.x = tmp.dot(halfExtentsWithMargin); abs_b.getRow(1, tmp); extent.y = tmp.dot(halfExtentsWithMargin); abs_b.getRow(2, tmp); extent.z = tmp.dot(halfExtentsWithMargin); aabbMinOut.sub(center, extent); aabbMaxOut.add(center, extent); stack.leave(); } public static void transformAabb(Vector3f localAabbMin, Vector3f localAabbMax, float margin, Transform trans, Vector3f aabbMinOut, Vector3f aabbMaxOut) { assert (localAabbMin.x <= localAabbMax.x); assert (localAabbMin.y <= localAabbMax.y); assert (localAabbMin.z <= localAabbMax.z); Stack stack = Stack.enter(); Vector3f localHalfExtents = stack.allocVector3f(); localHalfExtents.sub(localAabbMax, localAabbMin); localHalfExtents.scale(0.5f); localHalfExtents.x += margin; localHalfExtents.y += margin; localHalfExtents.z += margin; Vector3f localCenter = stack.allocVector3f(); localCenter.add(localAabbMax, localAabbMin); localCenter.scale(0.5f); Matrix3f abs_b = stack.alloc(trans.basis); MatrixUtil.absolute(abs_b); Vector3f center = stack.alloc(localCenter); trans.transform(center); Vector3f extent = stack.allocVector3f(); Vector3f tmp = stack.allocVector3f(); abs_b.getRow(0, tmp); extent.x = tmp.dot(localHalfExtents); abs_b.getRow(1, tmp); extent.y = tmp.dot(localHalfExtents); abs_b.getRow(2, tmp); extent.z = tmp.dot(localHalfExtents); aabbMinOut.sub(center, extent); aabbMaxOut.add(center, extent); stack.leave(); } }